444 research outputs found

    On Weak Keys and Forgery Attacks Against Polynomial-Based MAC Schemes

    Get PDF
    Abstract. Universal hash functions are commonly used primitives for fast and secure message authentication in the form of Message Authentication Codes (MACs) or Authenticated Encryption with Associated Data (AEAD) schemes. These schemes are widely used and standardised, the most well known being McGrew and Viega’s Galois/Counter Mode (GCM). In this paper we identify some properties of hash functions based on polynomial evaluation that arise from the underlying algebraic structure. As a result we are able to describe a general forgery attack, of which Saarinen’s cycling attack from FSE 2012 is a special case. Our attack removes the requirement for long messages and applies regardless of the field in which the hash function is evaluated. Furthermore we provide a common description of all published attacks against GCM, by showing that the existing attacks are the result of these algebraic properties of the polynomial-based hash function. We also greatly expand the number of known weak GCM keys and show that almost every subset of the keyspace is a weak key class. Finally, we demonstrate that these algebraic properties and corresponding attacks are highly relevant to GCM/2 +, a variant of GCM designed to increase the efficiency in software

    Revisiting MAC Forgeries, Weak Keys and Provable Security of Galois/Counter Mode of Operation

    Get PDF
    Abstract. Galois/Counter Mode (GCM) is a block cipher mode of operation widely adopted in many practical applications and standards, such as IEEE 802.1AE and IPsec. We demonstrate that to construct successful forgeries of GCM-like polynomial-based MAC schemes, hash collisions are not necessarily required and any polynomials could be used in the attacks, which removes the restrictions of attacks previously proposed by Procter and Cid. Based on these new discoveries on forgery attacks, we show that all subsets with no less than two authentication keys are weak key classes, if the final block cipher masking is computed additively. In addition, by utilizing a special structure of GCM, we turn these forgery attacks into birthday attacks, which will significantly increase their success probabilities. Furthermore, we provide a method to fix GCM in order to avoid the security proof flaw discovered by Iwata, Ohashi and Minematsu. By applying the method, the security bounds of GCM can be improved by a factor of around 2 20 . Lastly, we show that these forgery attacks will still succeed if GCM adopts MAC-then-Enc paradigm to protect its MAC scheme as one of the options mentioned in previous papers

    New security notions and feasibility results for authentication of quantum data

    Get PDF
    We give a new class of security definitions for authentication in the quantum setting. These definitions capture and strengthen existing definitions of security against quantum adversaries for both classical message authentication codes (MACs) and well as full quantum state authentication schemes. The main feature of our definitions is that they precisely characterize the effective behavior of any adversary when the authentication protocol accepts, including correlations with the key. Our definitions readily yield a host of desirable properties and interesting consequences; for example, our security definition for full quantum state authentication implies that the entire secret key can be re-used if the authentication protocol succeeds. Next, we present several protocols satisfying our security definitions. We show that the classical Wegman-Carter authentication scheme with 3-universal hashing is secure against superposition attacks, as well as adversaries with quantum side information. We then present conceptually simple constructions of full quantum state authentication. Finally, we prove a lifting theorem which shows that, as long as a protocol can securely authenticate the maximally entangled state, it can securely authenticate any state, even those that are entangled with the adversary. Thus, this shows that protocols satisfying a fairly weak form of authentication security automatically satisfy a stronger notion of security (in particular, the definition of Dupuis, et al (2012)).Comment: 50 pages, QCrypt 2016 - 6th International Conference on Quantum Cryptography, added a new lifting theorem that shows equivalence between a weak form of authentication security and a stronger notion that considers side informatio

    Partition Oracles from Weak Key Forgeries

    Get PDF
    In this work, we show how weak key forgeries against polynomial hash based Authenticated Encryption (AE) schemes, such as AES-GCM, can be leveraged to launch partitioning oracle attacks. Partitioning oracle attacks were recently introduced by Len et al. (Usenix\u2721) as a new class of decryption error oracle which, conceptually, takes a ciphertext as input and outputs whether or not the decryption key belongs to some known subset of keys. Partitioning oracle attacks allow an adversary to query multiple keys simultaneously, leading to practical attacks against low entropy keys (e.g. those derived from passwords). Weak key forgeries were given a systematic treatment in the work of Procter and Cid (FSE\u2713), who showed how to construct MAC forgeries that effectively test whether the decryption key is in some (arbitrary) set of target keys. Consequently, it would appear that weak key forgeries naturally lend themselves to constructing partition oracles; we show that this is indeed the case, and discuss some practical applications of such an attack. Our attack applies in settings where AE schemes are used with static session keys, and has the particular advantage that an attacker has full control over the underlying plaintexts, allowing any format checks on underlying plaintexts to be met -- including those designed to mitigate against partitioning oracle attacks. Prior work demonstrated that key commitment is an important security property of AE schemes, in particular settings. Our results suggest that resistance to weak key forgeries should be considered a related design goal. Lastly, our results reinforce the message that weak passwords should never be used to derive encryption keys

    Optimal Forgeries Against Polynomial-Based MACs and GCM

    Get PDF
    Polynomial-based authentication algorithms, such as GCM and Poly1305, have seen widespread adoption in practice. Due to their importance, a significant amount of attention has been given to understanding and improving both proofs and attacks against such schemes. At EUROCRYPT 2005, Bernstein published the best known analysis of the schemes when instantiated with PRPs, thereby establishing the most lenient limits on the amount of data the schemes can process per key. A long line of work, initiated by Handschuh and Preneel at CRYPTO 2008, finds the best known attacks, advancing our understanding of the fragility of the schemes. Yet surprisingly, no known attacks perform as well as the predicted worst-case attacks allowed by Bernstein\u27s analysis, nor has there been any advancement in proofs improving Bernstein\u27s bounds, and the gap between attacks and analysis is significant. We settle the issue by finding a novel attack against polynomial-based authentication algorithms using PRPs, and combine it with new analysis, to show that Bernstein\u27s bound, and our attacks, are optimal

    The Design and Analysis of Symmetric Cryptosystems

    Get PDF
    • …
    corecore