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Abstract. Galois/Counter Mode (GCM) is a block cipher mode of op-
eration widely adopted in many practical applications and standards,
such as IEEE 802.1AE and IPsec. We demonstrate that to construct
successful forgeries of GCM-like polynomial-based MAC schemes, hash
collisions are not necessarily required and any polynomials could be used
in the attacks, which removes the restrictions of attacks previously pro-
posed by Procter and Cid. Based on these new discoveries on forgery
attacks, we show that all subsets with no less than two authentication
keys are weak key classes, if the final block cipher masking is computed
additively. In addition, by utilizing a special structure of GCM, we turn
these forgery attacks into birthday attacks, which will significantly in-
crease their success probabilities. Furthermore, we provide a method to
fix GCM in order to avoid the security proof flaw discovered by Iwata,
Ohashi and Minematsu. By applying the method, the security bounds of
GCM can be improved by a factor of around 220. Lastly, we show that
these forgery attacks will still succeed if GCM adopts MAC-then-Enc
paradigm to protect its MAC scheme as one of the options mentioned in
previous papers.

Keywords: Galois/Counter Mode, GCM, MAC forgery, weak key, birth-
day attack, provable security, MAC-then-Enc.

1 Introduction

Information security plays an increasingly important role due to the fast growth
of computer networks. How to prevent personal data from unauthorized ac-
cess by third parties is one of the fundamental problems of any system design,
and it highly depends on the security levels of underlying algorithms to pro-
tect confidentiality and authentication. However, in practice, system designers
and software developers may have restrained time and resources to learn and
understand the detailed designs and principles of sophisticated cryptographic
algorithms and protocols, and may make poor decisions in their system or soft-
ware development and put users’ personal data in danger. Therefore, bridging
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the gap between academic research and practical developments and introducing
unified interfaces for both confidentiality and authentication are very important
tasks for researchers. We believe these can serve as some of the goals of the
CAESAR competition calling for authenticated encryption designs [3].

Generally, block ciphers are usedwith variousmodes of operation, such asCCM,
GCM and OCB, to compute ciphertexts andmessage authentication codes to pro-
vide confidentiality and authentication respectively. It would be very important to
better investigate and understand existing designs of modes of operation when de-
signingnewauthenticated encryption schemes.Galois/CounterMode (GCM) [4,12]
is anAuthenticated Encryptionwith AssociatedData (AEAD)mode [18] for block
ciphers,which possessesmany excellent features.GCMcan be easily and efficiently
implemented in both software and hardware. The computations of GCM can be
done in parallel, and only small portions need to be recomputed if one block of in-
put is changed. The theoretical proofs of GCM are given by its designers McGrew
and Viega in the paper [13]. GCM is included in NSA Suite B Cryptography [15],
and is widely adopted bymany standards and protocols, such as IEEE 802.1AE [7]
and IPsec [21].

The design of GCM is based on CounterMode for encryption and a polynomial-
based MAC scheme for authentication. The security of GCM has been assessed
by many researchers [5,6,10]. Recently, the algebraic structures of its underlying
polynomial-based MAC scheme were analyzed by Saarinen [19], and by Procter
and Cid [16,17]. Procter and Cid showed that almost all subsets of these kinds of
polynomial-based MAC schemes are weak key classes. In 2012, Iwata et al. found
a flaw in GCM’s original security proofs, and presented new security bounds for
it [8,9]. Under such circumstance, further investigation on these attacks and the
security bounds would be very important for usage of GCM and future designs of
authenticated ciphers.

Our Contributions. The main contributions of this paper are as follows.

– We reveal (and demonstrate by practical examples) that hash collisions are
not necessarily required for forgeries of GCM-like polynomial-based MAC
schemes, and polynomials with non-zero constant terms can be used for the
attacks. These remove certain restrictions of MAC forgery attacks proposed
by Procter and Cid.

– Based on the above discoveries on MAC forgeries, we show that all non-
singleton subsets (i.e. with more than one element) of authentication keys are
weak key classes, if the final masking by block ciphers is computed additively.
This is an extension to previous analysis of Procter and Cid.

– Based on a special structure of GCM, we show how to turn these forgery
attacks into birthday-bound based attacks by attacking the encryption oracle
instead of the verification or decryption oracle. This can significantly increase
success probabilities and avoid certain countermeasures.

– We provide a method to fix GCM in order to avoid the security proofs’ flaw
discovered by Iwata et al. By applying this method, the security bounds of
GCM can be improved by a factor of around 220.
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– We indicate that even if GCM is changed to MAC-then-Enc paradigm to
make adversaries more difficult to attack MAC schemes (one of the options
mentioned in [16,17]), these forgery attacks can still work.

The rest of this paper is organized as follows. The next section gives the back-
ground knowledge and notation used throughout the paper. Section 3 presents
our improved forgery attacks on polynomial-based MAC schemes, and studies
weak key classes of GCM-like schemes. Section 4 shows how to turn these forgery
attacks on GCM into birthday attacks to improve the success probabilities. The
method to fix GCM and the new security bounds are given in Section 5. The
attacks on the revised version of GCM in MAC-then-Enc paradigm are discussed
in Section 6. The last section concludes the paper and mentions potential future
work. The appendix provides several computational examples to demonstrate
the MAC forgery attacks proposed in this paper.

2 Preliminaries

This section firstly clarifies the notation that will be used throughout the paper.
Secondly, the design of GCM and adversarial models will be briefly introduced.

2.1 Notation

Following the notation in [8], strn(x) denotes the n-bit binary representation of
the integer x, where the leftmost bits are interpreted as the most significant bits
(MSB) of x, and int(s) returns the integer converted from the bit-string s.

The operator || concatenates two bit-strings, e.g. s1||s2. len(s) returns the bit-
length of s.msbn(s) represents the leftmost n bits of s, and lsbn(s) is the rightmost
n bits. 0l is used to denote a bit-string with l-bit 0’s, and 0311 is the concatenation
of 031 with one 1. For a set S, the number of elements in S is denoted as |S|.

The function inc(s), where len(s) = 128, is defined as

inc(s) = msb96(s)||str32(int(lsb32(s)) + 1 mod 232),

and incn denotes applying inc for n times.

2.2 A Brief Introduction to GCM

GCM is an AEAD scheme who adopts Counter Mode for encryption, and a
polynomial-based hash algorithm for message authentication. In this paper, we
concentrate on the version of GCM based on a 128-bit block cipher, which is the
major usage case proposed in its specification. The finite field GF(2128) adopted
in GCM uses the generating polynomial 1 + x+ x2 + x7 + x128.

The authenticated encryption of GCM requires four bit-string inputs, an ini-
tialization vector (IV, or nonce) N , a master key K, a plaintext P and an asso-
ciated data A, and then produces a pair (C, T ), where C is the ciphertext which
has the same length as P and T is a t-bit authentication tag, where t ≤ 128. The
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authenticated decryption algorithm takes N , K, C and T , and returns P if T is
valid or FAIL if T does not pass the verification. The lengths of these variables
should meet the following requirements [13]:

0 ≤ len(N) ≤ 264,
0 ≤ len(P ) ≤ 128(232 − 2),
0 ≤ len(A) ≤ 264.

We use EK(x) to denote the block cipher encryption with the master key
K. Suppose len(P ) = 128(n − 1) + m, where 1 ≤ m ≤ 128. Segment P into a
sequence of message blocks P1||P2|| · · · ||Pn, where len(Pi) = 128 for 1 ≤ i ≤ n−1
and len(Pn) = m. The authentication key H is derived from the master key by
computing H = EK(0128).

Algorithm 1 ([13]). The steps of GCM encryption are described as follows.

N0 =

{
N ||0311 if len(N) = 96,

GHASHH(N) if len(N) �= 96,

Ni = inc(Ni−1) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn))
C = C1||C2|| · · · ||Cn,

where GHASH is a keyed hash function that will be described later.

GCM follows the Enc-then-MAC (EtM) paradigm, i.e. computing authenti-
cation tags from ciphertexts. The authentication tag T is computed by GMAC,
defined as

T = GMACH,t(A,C) = msbt(GHASHH(A,C) ⊕ EK(N0)). (1)

GHASHH(·, ·) is a polynomial-based hash function defined over GF (2128), and
GHASHH(s) denotes GHASHH(00, s), i.e. the first parameter is an empty bit-
string. Suppose w and v are two bit-strings, len(w) = 128(n1 − 1) + m1 and
len(v) = 128(n2 − 1) + m2 for 1 ≤ m1,m2 ≤ 128. Segment w and v into
w1||w2|| · · · ||wm1 and v = v1||v2|| · · · ||vm2 respectively, where len(wi) = 128
for 1 ≤ i ≤ n1 − 1, len(vi) = 128 for 1 ≤ i ≤ n2 − 1, len(wn1 ) = m1, and
len(vn2 ) = m2. By using the following notation,

Bi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wi for 1 ≤ i ≤ n1 − 1,

wi||0128−m1 for i = n1,

vi for n1 + 1 ≤ i ≤ n1 + n2 − 1,

vi||0128−m2 for i = n1 + n2,

str64(len(w))||str64(len(v)) for i = n1 + n2 + 1,

the computation of GHASHH(w, v) is defined as

n1+n2+1∑
i=1

BiH
n1+n2+2−i.
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One important requirement when using GCM is that nonces must be distinct.
Once an IV is reused, the counter numbers Ni used in the Counter Mode of en-
cryption will be the same, and thus exclusive-oring two ciphertexts will eliminate
the key stream and get information about plaintexts. Another reason of forbid-
ding IV reuse is well explained in Joux’s forbidden attack [10], i.e. same nonces
will result in identical EK(N0) used in the equation (1) and by exclusive-oring
two authentication tags we will get an equation on H over finite fields that may
be easily solved.

For simplicity, in the following content, A, P and C are considered being
multiples of 128 bits, and N is also a multiple of 128 bits if len(N) �= 96, such
that all inputs do not need to be padded. If not stated explicitly, A is regarded as
an empty bit-string. Moreover, as in [17], the indices of input blocks are reversed,
e.g. P = Pn||Pn−1|| · · · ||P1 instead of P = P1||P2|| · · · ||Pn, for convenience of
polynomial representations.

2.3 Security Definitions

For a fixed but unknown master keyK of GCM, adversaries are given two oracles,
encryption oracle and decryption oracle. Adversaries can feed a tuple (N,P ) to
the encryption oracle to get (C, T ), or query the decryption oracle with (N,C, T ).
The decryption oracle will return P if T passes verification, or FAIL otherwise.
Adversaries are assumed to be nonce-respecting, i.e. no repeating nonces are
queried to the encryption oracle, which is not allowed in GCM or Counter Mode.

One of adversaries’ goals is to construct MAC forgeries. In this case, adver-
saries aim to create a valid authentication tag T for (N,C), which has not been
queried yet. Adversaries can make any queries except (N,C) to the encryption
and decryption oracles. If adversaries target only MAC schemes, they can be
given two oracles, authentication oracle and verification oracle. The authentica-
tion oracle produces T for queried (N,C); while the verification oracle returns
FAIL if T is not valid for (N,C), or returns PASS otherwise.

Analysis of a cryptographic algorithm’s weak keys is a very important as-
sessment. Handschuh and Preneel give a theoretical definition of weak keys for
symmetric cryptosystems in [6]: “A class of keys is called weak if for members of
the class the algorithm behaves in an unexpected way and if it is easy to detect
whether a particular key belongs to this class.” For example, for a MAC scheme,
the unexpected behavior may be that MAC forgeries can be made in a very high
probability. Moreover, to determine whether a key is in the class K, the number
of queries has to be fewer than exhaustive search’s, i.e. |K|.

3 Revisiting Weak Keys of Polynomial-Based MACs

In [16,17], Procter and Cid study the weak keys andMAC forgeries of polynomial-
based MAC schemes, including the one used in GCM. This is a more general
model upon Saarinen’s cycling attack [19].
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The main framework of MACs, in which they are interested, is based on eval-
uation hash [20]. Let F be a finite field of characteristic 2, H ∈ F be the authen-
tication key, and M = Mm||Mm−1|| · · · ||M1 be a message to be authenticated,
where Mi ∈ F. Define a polynomial gM (x) ∈ F[x] as

gM (x) =

m∑
i=1

Mix
i.

Then the function hH(M) = gM (H) is called evaluation hash. The hash function
outputs are masked by block cipher encryptions to produce the authentication
tags, such as EK(N) ⊕ hH(M) and EK(hH(M)). Poly1305-AES [2], and the
MAC schemes in GCM and SGCM [19] are all within this framework.

We summarize the main observation by Procter and Cid in [17] as follows.
For the convenience of the readers, we include a short proof of their result.

Result 1 ([17]). With the same notation as above, if there exists a polynomial
f(x) ∈ F[x] without a constant term, such that f(H) = 0, then forgeries of MAC
schemes based on the evaluation hash hH(x) can be made.

Proof. Assume

f(x) =
n∑

i=1

Fix
i,

and F = Fn||Fn−1|| · · · ||F1. Given a message M , we have

hH(M ⊕ F ) = gM⊕F (H) = gM (H)⊕ f(H) = gM (H) = hH(M),

where the shorter one of M and F in M ⊕ F is padded with zeros. We obtain a
collision on the evaluation hash, and thus a MAC forgery of the MAC scheme. ��
After obtaining a valid tuple (N,C, T ) by eavesdropping or active querying, the
adversaries query the verification oracle about (N,C ⊕F, T ). If the result is not
FAIL, then a valid MAC is forged. Please note that the polynomial f(x) always
has x as its factor, and is in the ideal 〈x2 ⊕Hx〉.

For an unknown H , the success probability of MAC forgery is directly related
to the choice of f(x). Procter and Cid propose three ways to select f(x): (1)
The first way is to use f(x) = x

∏
i(x ⊕Hi) to involve as many Hi as desired;

(2) The second way is based on irreducible factors of x2128 ⊕ x, which includes
Saarinen’s cycling attack as a special case; (3) The third is just using random
polynomials.

In the next section, we will show that, a MAC forgery can also be made for
any polynomial f(x) ∈ F[x], which is an extension of Result 1.

Moreover, based on these analyses, Procter and Cid point out that almost
any subset of the key space of these polynomial-based MAC schemes is a weak
key class.

Result 2 ([17]). Let H be a subset of the authentication key space of the MAC
scheme based on evaluation hash. If 0 ∈ H and |H| ≥ 2, or |H| ≥ 3, then H is
weak.
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Proof. If |H| ≥ 2 and 0 ∈ H, one query forged by f(x) = x
∏

i(x ⊕Hi) can be
fed into the verification oracle, where Hi ∈ H. To further determine whether 0
is in the set H, two queries by distinct f(x) ∈ 〈x2 ⊕Hx〉 have to be made, so all
elements in a subset |H| ≥ 3 can be detected by using two queries. ��

3.1 New Improved MAC Forgery Attacks

The MAC forgery attacks proposed by Procter and Cid are constructed upon
hash collisions, and one of the attacks’ restrictions is that the chosen polynomial
f(x) should always have x as a factor, or equivalently do not have a constant
term. We will demonstrate below how to create MAC forgeries not based on
hash collisions, and without the zero constant term restriction.

For the MAC schemes as in GCM and SGCM, whose final masking by block
ciphers is computed additively, we give the following theorem, where the notation
is the same as above.

Theorem 1. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, for the
evaluation hash based MAC scheme T = EK(N) ⊕ hH(M), a MAC forgery can
be constructed.

Proof. Let Q∗ be the concatenation of coefficients Qn||Qn−1|| · · · ||Q1 without
Q0, and q(x) = q∗(x)⊕Q0. Since q(H) = 0, we have

T = hH(M)⊕ Ek(N) = hH(M)⊕ Ek(N)⊕ q(H),

which implies
T ⊕Q0 = Ek(N)⊕ hH(M)⊕ q∗(H)

= Ek(N)⊕ gM (H)⊕ q∗(H)
= Ek(N)⊕ gM⊕Q∗(H).

This means if we know a polynomial q(x) such that q(H) = 0, we can exclusive-
or coefficients of q(x)’s non-constant terms with the captured message, to obtain
a valid tuple as (N,M ⊕ Q∗, T ⊕ Q0), if the authentication tag T is computed
as Ek(N)⊕ hH(M). ��

Please note that the method in the above proof does not rely on a hash
collision, and the constant term Q0 is not required to be zero. We also want
to mention that Theorem 1 leads us to an extension to the original analysis of
Procter and Cid on weak keys, which will be discussed in the next subsection.

A practical attack example on GCM, by using the method in Theorem 1
(along with a length extension technique), is given in Appendix A.1.

For the sake of completeness, we also give the following theorem, which works
for both EK(N)⊕ hH(M) and EK(hH(M)).

Theorem 2. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, a forgery
can be made on the MAC schemes based on evaluation hash by using α(x)q(x),
where α(x) is a polynomial without a constant term.
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Proof. Since q(H) = 0, we have α(H)q(H) = 0. Because α(0) = 0, α(0)q(0) = 0.
Therefore, we can apply the same method in Result 1 to construct hash collisions
and thus MAC forgeries. ��

Theorem 2 can be seen as covered by the analysis of Procter and Cid, since
α(x)q(x) is still in the ideal 〈x2 ⊕ Hx〉. However, Theorem 2 is insufficient to
deduce the result about weak key classes (Theorem 3 in the next subsection)
supported by Theorem 1.

3.2 All Non-singleton Subsets of Keys are Weak

To detect whether an authentication key H is in a subset H of the key space,
the number of queries should be less than |H|. If |H| = 2, only one query can be
made, and thus whether zero is in H cannot be determined by using polynomials
in 〈x2⊕Hx〉, since it will need at least two queries. However, based on the analysis
of Theorem 1, we may use polynomials in 〈x⊕H〉 instead of 〈x2 ⊕Hx〉 to make
one query and determine whether the authentication key is in H.

Theorem 3. For an evaluation hash based MAC scheme, T = EK(N)⊕hH(M),
if given a valid tuple (N,M, T ), then making one query to the verification oracle
is enough to determine whether the authentication key H ∈ F in use is in a
subset of keys H = {H1, H2, · · · , Hn} ⊆ F.

Proof. First define a polynomial

q(x) =

n∑
i=0

Qix
i =

n∏
i=1

(x⊕Hi),

where Qi ∈ F for 0 ≤ i ≤ n. Let M ′ = M ⊕ Q∗ and T ′ = T ⊕ Q0 with
zero pre-padding for shorter strings, where Q∗ = Qn||Qn−1|| · · · ||Q1. Query the
verification oracle with the tuple (N,M ′, T ′). If the verification oracle does not
return FAIL, the authentication key H in use is known to be in H. H is not in
H if FAIL is returned.

It is easy to see H is in H if and only if (N,M ′, T ′) passes. If H is in H,
then q(H) = 0, and thus (N,M ′, T ′) is valid. On the other hand, the validity of
(N,M ′, T ′) implies q(H) = 0, so H must be a root of q(x) = 0, which is among
all the elements of H. ��

The steps in Theorem 3 are similar to those in [17], except the absence of the
steps to determine whether 0 is in H.

Based on Theorem 3, we have the following corollary about weak key classes.

Corollary 1. For an evaluation hash based MAC scheme, T = EK(N)⊕hH(M),
any subset of authentication key space, H, is weak if |H| ≥ 2.

Proof. Due to Theorem 3, after obtaining a valid tuple (N,M, T ) by passive
eavesdropping, whether the authentication key H in use is the subset H can
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be determined by only one query, which is efficient compared to the size of the
subset, i.e. 1 < |H|.

On the other hand, once H is known to be in the subset H, H is a solution for
q(x) =

∏n
i=1(x⊕Hi) = 0, where Hi’s are all elements of H. Then the polynomial

α(x)q(x) with an arbitrary non-zero α(x) can be used to construct more MAC
forgeries. ��

4 Turning MAC Forgeries into Birthday Attacks

In [8], Iwata et al. find a flaw in the security proofs of GCM given by McGrew
and Viega in [13]. The main problem is that inc may be translated to multiple
distinct forms in terms of exclusive-ors, such that the equation

incr1(GHASHH(Na)) = incr2(GHASHH(N b)) (2)

may have many more solutions than the desired lN + 1 for any given r1, r2, N
a

and N b, where 0 ≤ r1, r2 ≤ 232 − 2, Na �= N b, and lN is the maximum number
of blocks for nonces.

Result 3 ([8]). For a randomly chosen H, the probability for the equation (2)
to hold is at most

222(lN + 1)/2128.

Furthermore, for n queries to the encryption oracle with the nonces N i’s,
where 1 ≤ i ≤ n, the probability of having a collision on counter numbers, i.e.
Na

r1 = N b
r2 for certain r1, r2, a and b, is at most

222(n− 1)(σ + n)(lN + 1)

2128
, (3)

where 0 ≤ r1, r2 ≤ 232 − 2, 1 ≤ a, b ≤ n, the total length of plaintexts is at most
σ blocks, and Na and N b are the corresponding nonces for the counter numbers
Na

r1 and N b
r2 respectively.

4.1 New Birthday-Bound-Based MAC Forgery Attacks on GCM

The original forgery attacks on polynomial-based MAC schemes, including our
attacks described in Section 3.1, are targeting algebraic properties of underlying
evaluation hash functions, e.g., GHASH in the case of GCM. The forged queries
cannot be fed to the encryption oracle directly because two queries with identical
nonces are forbidden.

The work by Iwata et al. reminds us that GCM has a very special design,
in which GHASH is reused for generating initial counter numbers if len(N) �=
96. This makes GHASH attackable in the encryption oracle. Precisely, assuming
H �= 0, the attack consists of the following three steps:
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1. Either passively or actively obtain a valid tuple (N,P,C), where len(N) �= 96.
Please note that we do not need the authentication tag T here.

2. Construct a polynomial q(x), and properly apply xdq(x) to N to derive N ′,
where d ≥ 1. Feed the pair (N ′, P ) to the encryption oracle, and get the
corresponding ciphertext C′. If C′ = C, we know that q(H) = 0.

3. Apply q(x) to other captured messages and tags to construct more forgeries,
or recover the authentication key by binary search or solving q(x) = 0.

If H = 0, the outputs of GMAC will be the same, and thus it can be easily
detected.

One advantage of targeting the encryption oracle is that we can collect all
query results into a set to perform birthday attacks. For any query to the en-
cryption oracle, we can always get corresponding ciphertext and tag as long
as the nonce is not previously queried. Using the same notation in the spec-
ification of GCM in Algorithm 1, collect EK(N1)’s, which are derived from
exclusive-oring P1’s with C1’s, into a set S. If a collision occurs in S, e.g.
EK(Na

1 ) = EK(N b
1), where Na

1 and N b
1 are the corresponding first counter

numbers for the nonces Na and N b, then we have Na
1 = N b

1 as well. Hence
a collision GHASHH(Na) = GHASHH(N b) is found. This birthday collision at-
tack can have a significantly higher success probability than the original attacks
on the verification or decryption oracle.

Assume the polynomial q(x) is chosen randomly and independently, and H �=
0. The success probability for the original trial-and-error method on the verifi-
cation or decryption oracle is

n(lN + 1)/2128, (4)

where n is the number of queries that have been made; while the upper bound for
the probability of the birthday attack is (see Lemma A.9 in Section A.4 of [11])

0.5 · n2(lN + 1)/2128. (5)

In addition to the first encrypted counter blocks, we can also collect the follow-
ing blocks into S, in which way we may achieve even larger collision probabilities.
For example, EK(Na

i ) may be equal to EK(N b
j ) for certain i and j. The collision

probability for this case can be obtained from the equation (3) in Result 3. Al-
though the success probability of this case is higher than the previous methods
of trial-and-error and birthday attacks, the collision Na

i = N b
j may need more

time complexity to be utilized for MAC forgery attacks. One naive way is to try
every polynomial over the finite field that can be converted from incr with the
specific r, and this will cost 222 time at most.

Moreover, if certain countermeasures on the decryption or verification oracle
are carried out, such as forbidding nonce reuse, the original attacks would fail
or be detected, but the attacks on the encryption oracle will be unaffected.

A practical attack example on non-96-bit nonces is given in Appendix A.2.
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5 Revisiting Provable Security of GCM

After pointing out the flaw in GCM’s original security proofs, Iwata et al. give
new security bounds, which are characterized by privacy advantage and authen-
ticity advantage. Please refer to [13,8,9] for the detailed definitions of privacy
and authenticity advantages.

Result 4 ([16,17]). The privacy advantage of GCM is at most

0.5(σ + q + 1)2

2128
+

222q(σ + q)(lN + 1)

2128
, (6)

and the upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

222(q + q′ + 1)(σ + q)(lN + 1)

2128
+

q′(lA + 1)

2t
, (7)

where the total length of plaintexts is at most σ blocks, q and q′ are numbers of
encryption and decryption queries respectively, and lN and lA are the maximum
numbers of blocks for nonces and inputs respectively.

Generally, the values of the equations (6) and (7) are dominated by their
second terms, since they have a large constant 222.

5.1 Repairing GCM and Its Security Bounds

Here we propose a method to fix the design of GCM such that the large constant
222 in the equations (6) and (7) can be reduced to 22. Since the flaw of the GCM’s
security proofs originates from the operation inc as explained in the previous
section, we aim to replace the functionality of inc with operations in the finite
field.

Consider w · x, where w is a primitive element of F2n . It is clear that the
outputs of w · x consist of two cycles, namely (0) and (1, w, . . . , w2n−2). Now
define a new function Lw as

Lw(x) =

⎧⎪⎨
⎪⎩
w · x if x = wi, 0 ≤ i ≤ 2n − 3,

0 if x = w2n−2,

1 if x = 0.

(8)

The following theorem is important for our discussions in this subsection.

Theorem 4. Let Lw be the function defined above, and f, g be two functions
defined on F2n with f(0), g(0) �= 0. Denoting deg(f) = d1, deg(g) = d2 and
d = max(d1, d2), we have

max
0≤r≤2n−1

|{x : x ∈ F2n |Lr
w(f(x)) + g(x) = 0}| ≤ 4d.
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Proof. Now we consider the number of solutions of the equation

Lr
w(f(x)) + g(x) = 0, (9)

where 0 ≤ r ≤ 2n − 1. The equation (9) can be divided into the following cases.

1. If f(x) = 0,

(a) If Lr
w(f(x)) = 0, then g(x) = 0.

(b) If Lr
w(f(x)) �= 0, then g(x) = wr−1.

2. If f(x) �= 0,

(a) If Lr
w(f(x)) = 0, then g(x) = 0.

(b) If Lr
w(f(x)) �= 0, let f(x) = wr1 and Lr

w(f(x)) = wr2 , where 0 ≤ r1, r2 <
2n − 1. Then we have
i. If r1 ≤ r2, then wrf(x) = g(x).
ii. If r1 > r2, then wr−1f(x) = g(x).

Therefore, for a given r, any solution of the equation Lr
w(f(x)) + g(x) = 0 must

be one of the solutions of the four equations⎧⎪⎪⎨
⎪⎪⎩

g(x) = 0,
g(x) = wr−1,

wrf(x) = g(x),
wr−1f(x) = g(x).

The total number of solutions for these four equations are at most 2d2+2d ≤ 4d.
��

It is known that the detailed design of the next counter function of Counter
Mode is not important as long as counter numbers are produced uniquely [14]. If
the underlying block cipher is ideal, i.e. treated as a pseudorandom permutation
PRP for randomly chosen encryption key, PRP(Lr

w(s)) is indistinguishable from
PRP(incr(s)). Therefore, the Counter Mode encryption in GCM will have same
security properties as original if inc is replaced by Lw defined over F. We propose
the following revised design of GCM.

Algorithm 2. The encryption steps of the revised GCM, denoted by LGCM,
are as follows.

N0 = GHASHH(N),
Ni = Li

w(N0) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn)),
C = C1||C2|| · · · ||Cn,

where the notation is the same as in Algorithm 1.

Please note that nonces are always processed by GHASH regardless of nonces’
lengths, for simplicity of security proofs.

Based on Theorem 4, we can have the following lemma.
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Lemma 1. Randomly choosing an authentication key H, the probability to have

Lr1
w (GHASHH(N1)) = Lr2

w (GHASHH(N2)) (10)

is no more than 4(lN + 1)/2128 for any given r1, r2, N1 and N2, where 0 ≤
r1, r2 ≤ 232 − 2, N1 �= N2, and lN is the maximum number of blocks for nonces.

Proof. Without loss of generality, assume r2 ≤ r1, then the equation (10) is
equivalent to

Lr1−r2
w (GHASHH(N1)) = GHASHH(N2). (11)

The maximum degree of GHASHH(N1) and GHASHH(N2) is lN + 1, so by ap-
plying Theorem 4 we know the probability for the equation (11) to hold is
4(lN + 1)/2128 for a randomly chosen H . ��

Now we can give the security bounds of LGCM as follows.

Theorem 5. For LGCM, the revised GCM algorithm defined in Algorithm 2,
the privacy advantage is at most

0.5(σ + q + 1)2

2128
+

4q(σ + q)(lN + 1)

2128
, (12)

and the new upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

4(q + q′ + 1)(σ + q)(lN + 1)

2128
+

q′(lA + 1)

2t
, (13)

where the notation is the same as in Result 4.

Proof. The proofs of Theorems 1 and 2 in [9] can be carried over by using
Lemma 1 in the paper to replace the original probability statement of counter
number collisions. ��
Implementation against Timing-Based Side-Channel Attacks

The functions defined in (8) have vulnerabilities for timing-based side-channel
attacks since the computations will have inconsistent times for different inputs.
To minimize such effects, we may use the following equations in practical imple-
mentations.

y = w · x,

Lw(x) =

⎧⎪⎨
⎪⎩
1 if y = 0,

0 if y = 1,

y otherwise.

(14)

The equations (14) would have very close computational time costs for different
branches.

We want to make a note here that it might be possible to directly adopt w · x
instead of Lw(x) to generate counter numbers since the probability for GHASH
to output zero is low, but the security proofs for GCM may require to be largely
rewritten and new bounds might have different formats as existing ones. We
leave this as an open problem for interested readers.
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6 Attacking GCM in MAC-then-Enc Mode

GCM follows the Enc-then-MAC paradigm, i.e. authentication tag is computed
based on ciphertexts. It is known that once the integrity of the system is com-
promised, the whole system including privacy will not be trustworthy. For GCM,
if we successfully perform a MAC forgery attack described in previous sections,
e.g., a forged tuple (N,C′, T ′), based on a valid (N,C, T ), is fed to the decryp-
tion oracle and passes verification, the oracle will return P ′ that may have a
known linear difference with P . In this way, P can be obtained even without
any knowledge of the encryption key. Therefore, the message authentication al-
gorithm must be well protected.

One potential and straightforward option, which is indicated in [16,17], is to
change GCM to a MAC-then-Enc scheme (MtE GCM, thereafter). More pre-
cisely, in MtE GCM, GMAC is computed based on plaintexts instead of cipher-
texts, and the authentication tag is encrypted by block ciphers in Counter Mode.

However, we find that the MAC forgery attacks described in previous sections
may still work on MtE GCM. These attacks are based on the linear properties of
the polynomial-based MAC schemes. Assuming no length extension is needed,
applying q(x) directly to ciphertexts and encrypted tags may successfully result
in MAC forgeries. Consider the simplified case with

ET = hH(P )⊕ EK(N)⊕ EK(Nt)
= hH(P )⊕Mask
= hH(C ⊕ S)⊕Mask,

where ET is the encrypted authentication tag, EK(Nt) is to encrypt the au-
thentication tag, Mask = EK(N) ⊕ EK(Nt), S is the key stream produced by
Counter Mode, and the other variables are the same as in previous analyses. If
we know a function q(x) such that q(H) = 0, then

ET ′ = ET ⊕Q0 = hH(C ⊕ S)⊕ q∗(H)⊕Mask
= gC⊕S(H)⊕ gQ∗(H)⊕Mask
= gC⊕Q∗⊕S(H)⊕Mask
= hH(C ⊕Q∗ ⊕ S)⊕Mask
= hH(C′ ⊕ S)⊕Mask.

This implies the tuple (N,C′, ET ′), where C′ = C ⊕ Q∗ and ET ′ = ET ⊕ Q0,
will pass the verification oracle of MtE GCM. A computational example is given
in Appendix A.3.

If len(Q∗) > len(C), i.e. length extension is needed, the above attack on MtE
GCM may not work. To decrypt C ⊕ Q∗, where len(C ⊕ Q∗) > len(C), the
verification oracle will produce longer key stream S′ = S||Su with an unknown
portion Su, so outputs of the oracle will become unpredictable. However, ad-
versaries may avoid this by trying to attack GHASH in the encryption oracle as
discussed in Section 4.1, or simply waiting for longer ciphertexts.

Therefore, we can see that changing GCM into MAC-then-Enc paradigm
would add little strength against these MAC forgery attacks.
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7 Concluding Remarks

This paper revisits weak key classes of polynomial-based MAC schemes and
provable security of GCM. We demonstrate that hash collisions are not necessary
to construct successful MAC forgeries and any polynomials can be used in these
attacks, which removes the restrictions in Procter and Cid’s attacks. Based on
these new discoveries on MAC forgeries, we prove that all subsets of keys with
no less than two elements are weak key classes for GCM-like polynomial-based
MAC schemes, which is an extension to Procter and Cid’s analysis on weak
keys. Moreover, we present a novel approach to transform these MAC forgery
attacks into birthday attacks to increase their success probabilities. The success
probabilities of these attacks are summarized in Table 1. Furthermore, we provide
a method to fix GCM in order to avoid the security proof flaw discovered by
Iwata et al. and significantly improve the security bounds. In addition, we show
that these MAC forgeries attacks would still succeed if GCM is modified to
MAC-then-Enc paradigm, as one of the options mentioned in [16,17], such that
authentication tags are protected by Counter Mode encryptions.

Table 1. Comparisons of success probabilities of MAC forgery attacks

Method Success Probability Reference

Trial-and-Error n(lN + 1)/2128 [16,17]
Birthday Attack ≤ 0.5 · n2(lN + 1)/2128 Section 4.1

Birthday Attack with inc ≤ 222(n− 1)(n + σ)(lN + 1)/2128 Section 4.1

Future work may include improving the probability analyses in Section 4.1.
Certain probabilities for collisions and MAC forgeries are characterized by upper
bounds rather than average estimations. If more accurate probabilities can be
derived, this work may also, in return, improve the security bounds given by
Iwata et al. on the original GCM design.

As recommended in [8,9], we further suggest that GCMmay preferably be used
with 96-bit nonces. For example, an altered version of GCM was introduced by
Aoki and Yasuda in [1], which only accepts a fixed-length nonce. Reusing GHASH
in both generating initial counter numbers and computing authentication tags
may help attackers to amplify their success probabilities for MAC forgeries as we
discussed in Section 4.1. For practical applications that have to use non-96-bit
nonces, we suggest applying the fix to GCM proposed in Section 5.1, i.e. using
LGCM defined in Algorithm 2, which could tighten the security bounds by a
factor of around 220.
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Appendix A Practical Attack Examples

A.1 A Example for Forgeries by Polynomials with Non-zero
Constant Terms

This example is for GCM with AES-128 and 128-bit authentication tags, and
the associated data A is always considered as empty. We use the same repre-
sentations as the test vectors in GCM’s specification [12], e.g. 1 in GF(2128)
is represented as 80000000000000000000000000000000, and longer strings will
written in multiple lines.

We take the following values for the encryption of GCM. The lengths of P
and C are 128 bits, i.e. one block.

K 71eebc49c8fb773b2224eaff3ad68714

N 07e961e67784011f72faafd95b0eb640

89c8de15ad685ec57e63d56e679d3e20

2b18b75fcbbec3185ffc41653bc2ac4a

e6ae8be8c85636f353a9d19a86100d0b

P 705da82292143d2c949dc4ba014f6396

H d27430c121f14d4ddfecb38acaffec53

C 251ccc6d2c45540cac4fde8b1e36802d

T be2da05993fbde00421c1d8eaaaea373

Suppose we have a subset of authentication keys H = {H1, H2, H3}, whose
values are as follows.

H1 d27430c121f14d4ddfecb38acaffec53

H2 00000000000000000000000000000001

H3 00000000000000000000000000000002

Construct the polynomial

q(x) =

3∑
i=0

Qix
i =

3∏
i=1

(x⊕Hi),

we can get the values for Qi’s.

Q3 80000000000000000000000000000000

Q2 d27430c121f14d4ddfecb38acaffec50

Q1 c488aa211ab5dccec9c440bc33fc47b3

Q0 5bb5716dc4b4687a06f15f10d62613ee

http://tools.ietf.org/html/rfc4106.html
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Please note q(x) is a polynomial with non-zero constant term, i.e. Q0 �= 0.
Then compute α = (1⊕2)/Q0 = 7ef05dd871ead7e7f8e79d7d9343a170, such

that α ·Q1 ⊕ 1 will match the length of new message, i.e. 2. Construct the new
ciphertext C′ = (α ·Q3)||(C⊕α ·Q2), and the authentication tag T ′ = T ⊕α ·Q0.

C′ 7ef05dd871ead7e7f8e79d7d9343a170

7ccbd8dbfca54d785f5662d48c7eef81

T ′ 8b53b318750a2e948459b204e47629b4

(N,C′, T ′) passes the verification, and thus we complete a MAC forgery with
length extension by using a polynomial with a non-zero constant term.

A.2 MAC Forgeries by Attacking Non-96-bit Nonces of GCM

We only give a basic example for this case. The values and the polynomial q(x)
computed in the previous example are reused here.

Construct the polynomial q′(x) = x2q(x), and apply q′(x) to N to get a new
512-bit nonce N ′, i.e. N ′ = (N4 ⊕Q3)||(N3 ⊕Q2)||(N2 ⊕Q1)||(N1 ⊕Q0).

N ′ 87e961e67784011f72faafd95b0eb640

5bbceed48c991388a18f66e4ad62d270

ef901d7ed10b1fd6963801d9083eebf9

bd1bfa850ce25e8955588e8a50361ee5

Feeding (N ′, P ) to the encryption oracle will result in the same ciphertext
as C, so we are sure that the authentication H is the set H, and further MAC
forgeries can be carried out by using q(x).

A.3 MAC Forgeries for GCM in MAC-then-Enc Mode

The same K, N , H1, and H2 as in the previous examples are used. In order to
avoid length extension, P is chosen to be longer and H3 is explicitly chosen to
be H1 ·H2/(H1 ⊕H2).

P 705da82292143d2c949dc4ba014f6396

705da82292143d2c949dc4ba014f6396

C a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET 5aba7c39516a4a90f738eaf61b02514a

H3 6e0b0d1eaf109b0f26926be82780085c

Constructing the polynomial q(x), we can have its coefficients as follows.

Q3 80000000000000000000000000000000

Q2 bc7f3ddf8ee1d642f97ed862ed7fe40e

Q1 00000000000000000000000000000000

Q0 c52222258b2614c4c6f5981c65f15acd
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Please note Q1 = 0, so the length padding block in GHASH can stay unchanged.
The new ciphertext and encrypted authentication tag areC′ = (C2⊕Q3)||(C1⊕

Q2) and ET ′ = ET ⊕Q0.

C′ a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET ′ 5aba7c39516a4a90f738eaf61b02514a

(N,C′, ET ′) passes the verification oracle of MtE GCM.
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