19,701 research outputs found

    On Uniformity and Circuit Lower Bounds

    Get PDF
    Abstract—We explore relationships between circuit complexity, the complexity of generating circuits, and algorithms for analyzing circuits. Our results can be divided into two parts: 1. Lower Bounds Against Medium-Uniform Circuits. Informally, a circuit class is “medium uniform ” if it can be generated by an algorithmic process that is somewhat complex (stronger than LOGTIME) but not infeasible. Using a new kind of indirect diagonalization argument, we prove several new unconditional lower bounds against medium uniform circuit classes, including: ‱ For all k, P is not contained in P-uniform SIZE(n k). That is, for all k there is a language Lk ∈ P that does not have O(n k)-size circuits constructible in polynomial time. This improves Kannan’s lower bound from 1982 that NP is not in P-uniform SIZE(n k) for any fixed k

    AND and/or OR: Uniform Polynomial-Size Circuits

    Get PDF
    We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the norm for Boolean circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its input variables. Determining that subset amounts to solving a number of reachability questions on a polynomial-size directed graph (which input gates are connected to the output gate?), taken from a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability problem can be solved, by say, uniform AC^0 circuits (constant depth, polynomial-size, AND, OR, NOT gates). This is one reason why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural and worthy of study. Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND circuits, in terms of known uniform machine-based complexity classes. In particular, we consider the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety of reduction types. We give upper and lower bounds on the computational power of these language classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then, some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k≄1k \geq 1 it is consistent with theory TT that computational class C⊆̞i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Quantum algorithms for testing properties of distributions

    Get PDF
    Suppose one has access to oracles generating samples from two unknown probability distributions P and Q on some N-element set. How many samples does one need to test whether the two distributions are close or far from each other in the L_1-norm ? This and related questions have been extensively studied during the last years in the field of property testing. In the present paper we study quantum algorithms for testing properties of distributions. It is shown that the L_1-distance between P and Q can be estimated with a constant precision using approximately N^{1/2} queries in the quantum settings, whereas classical computers need \Omega(N) queries. We also describe quantum algorithms for testing Uniformity and Orthogonality with query complexity O(N^{1/3}). The classical query complexity of these problems is known to be \Omega(N^{1/2}).Comment: 20 page

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    An Introduction to Quantum Complexity Theory

    Get PDF
    We give a basic overview of computational complexity, query complexity, and communication complexity, with quantum information incorporated into each of these scenarios. The aim is to provide simple but clear definitions, and to highlight the interplay between the three scenarios and currently-known quantum algorithms.Comment: 28 pages, LaTeX, 11 figures within the text, to appear in "Collected Papers on Quantum Computation and Quantum Information Theory", edited by C. Macchiavello, G.M. Palma, and A. Zeilinger (World Scientific

    On Symmetric Circuits and Fixed-Point Logics

    Get PDF
    We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.Comment: 22 pages. Full version of a paper to appear in STACS 201
    • 

    corecore