58,536 research outputs found

    On Two Measures of Distance Between Fully-Labelled Trees

    Get PDF
    The last decade brought a significant increase in the amount of data and a variety of new inference methods for reconstructing the detailed evolutionary history of various cancers. This brings the need of designing efficient procedures for comparing rooted trees representing the evolution of mutations in tumor phylogenies. Bernardini et al. [CPM 2019] recently introduced a notion of the rearrangement distance for fully-labelled trees motivated by this necessity. This notion originates from two operations: one that permutes the labels of the nodes, the other that affects the topology of the tree. Each operation alone defines a distance that can be computed in polynomial time, while the actual rearrangement distance, that combines the two, was proven to be NP-hard. We answer two open question left unanswered by the previous work. First, what is the complexity of computing the permutation distance? Second, is there a constant-factor approximation algorithm for estimating the rearrangement distance between two arbitrary trees? We answer the first one by showing, via a two-way reduction, that calculating the permutation distance between two trees on n nodes is equivalent, up to polylogarithmic factors, to finding the largest cardinality matching in a sparse bipartite graph. In particular, by plugging in the algorithm of Liu and Sidford [ArXiv 2020], we obtain an ??(n^{4/3+o(1}) time algorithm for computing the permutation distance between two trees on n nodes. Then we answer the second question positively, and design a linear-time constant-factor approximation algorithm that does not need any assumption on the trees

    Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model

    Full text link
    We introduce a random graph model based on k-trees, which can be generated by applying a probabilistic preferential attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis of important parameters for the network model such as the degree, the local clustering coefficient and the number of descendants of the nodes and root-to-node distances. We do not only obtain results for random nodes, but in particular we also get a precise description of the behaviour of parameters for the j-th inserted node in a random k-tree of size n, where j = j(n) might grow with n. The approach presented is not restricted to this specific k-tree model, but can also be applied to other evolving k-tree models.Comment: 12 pages, 2 figure

    On the accuracy of language trees

    Get PDF
    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it.Comment: 36 pages, 14 figure

    Regenerative tree growth: structural results and convergence

    Full text link
    We introduce regenerative tree growth processes as consistent families of random trees with n labelled leaves, n>=1, with a regenerative property at branch points. This framework includes growth processes for exchangeably labelled Markov branching trees, as well as non-exchangeable models such as the alpha-theta model, the alpha-gamma model and all restricted exchangeable models previously studied. Our main structural result is a representation of the growth rule by a sigma-finite dislocation measure kappa on the set of partitions of the natural numbers extending Bertoin's notion of exchangeable dislocation measures from the setting of homogeneous fragmentations. We use this representation to establish necessary and sufficient conditions on the growth rule under which we can apply results by Haas and Miermont for unlabelled and not necessarily consistent trees to establish self-similar random trees and residual mass processes as scaling limits. While previous studies exploited some form of exchangeability, our scaling limit results here only require a regularity condition on the convergence of asymptotic frequencies under kappa, in addition to a regular variation condition.Comment: 23 pages, new title, restructured, presentation improve
    • …
    corecore