1,204 research outputs found

    On Trivial Solution and High Correlation Problems in Deep Supervised Hashing

    Get PDF
    Deep supervised hashing (DSH), which combines binary learning and convolutional neural network, has attracted considerable research interests and achieved promising performance for highly efficient image retrieval. In this paper, we show that the widely used loss functions, pair-wise loss and triplet loss, suffer from the trivial solution problem and usually lead to highly correlated bits in practice, limiting the performance of DSH. One important reason is that it is difficult to incorporate proper constraints into the loss functions under the mini-batch based optimization algorithm. To tackle these problems, we propose to adopt ensemble learning strategy for deep model training. We found out that this simple strategy is capable of effectively decorrelating different bits, making the hashcodes more informative. Moreover, it is very easy to parallelize the training and support incremental model learning, which are very useful for real-world applications but usually ignored by existing DSH approaches. Experiments on benchmarks demonstrate the proposed ensemble based DSH can improve the performance of DSH approaches significant

    Hashing as Tie-Aware Learning to Rank

    Full text link
    Hashing, or learning binary embeddings of data, is frequently used in nearest neighbor retrieval. In this paper, we develop learning to rank formulations for hashing, aimed at directly optimizing ranking-based evaluation metrics such as Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG). We first observe that the integer-valued Hamming distance often leads to tied rankings, and propose to use tie-aware versions of AP and NDCG to evaluate hashing for retrieval. Then, to optimize tie-aware ranking metrics, we derive their continuous relaxations, and perform gradient-based optimization with deep neural networks. Our results establish the new state-of-the-art for image retrieval by Hamming ranking in common benchmarks.Comment: 15 pages, 3 figures. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201
    • …
    corecore