43 research outputs found

    On treewidth and minimum fill-in of asteroidal triple-free graphs

    Get PDF
    We present O(n5R + n3R3) time algorithms to compute the treewidth, pathwidth, minimum fill-in and minimum interval graph completion of asteroidal triple-free graphs, where n is the number of vertices and R is the number of minimal separators of the input graph. This yields polynomial time algorithms for the four NP-complete graph problems on any subclass of the asteroidal triple-free graphs that has a polynomially bounded number of minimal separators, as e.g. cocomparability graphs of bounded dimension and d-trapezoid graphs for any fixed d ⩾ 1

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree

    Independent sets in asteroidal triple-free graphs

    Get PDF
    An asteroidal triple is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an asteroidal triple. We show that there is an O(n 2 · (¯m+1)) time algorithm to compute the maximum cardinality of an independent set for AT-free graphs, where n is the number of vertices and ¯m is the number of non edges of the input graph. Furthermore we obtain O(n 2 · (¯m+1)) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problem on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF

    Independent Sets in Asteroidal Triple-Free Graphs

    Get PDF
    An asteroidal triple (AT) is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an AT. We show that there is an O(n4 ) time algorithm to compute the maximum weight of an independent set for AT-free graphs. Furthermore, we obtain O(n4 ) time algorithms to solve the INDEPENDENT DOMINATING SET and the INDEPENDENT PERFECT DOMINATING SET problems on AT-free graphs. We also show how to adapt these algorithms such that they solve the corresponding problem for graphs with bounded asteroidal number in polynomial time. Finally, we observe that the problems CLIQUE and PARTITION INTO CLIQUES remain NP-complete when restricted to AT-free graphs

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF
    We show that the minimum fill-in and the minimum interval graph completion of a d-trapezoid graph can be computed in time On d . We also show that the treewidth and the pathwidth of a d-trapezoid graph can be computed by an On twG d,1 time algorithm. For both algorithms, d is supposed to be a fixed positive integer and it is required that a suitable intersection model of the given d-trapezoid graph is part of the input. As a consequence, the minimum fill-in and the minimum interval graph completion as well as the treewidth and the pathwidth of a given trapezoid graph (or permutation graph) can be computed in time On 2 , even if no intersection model is part of the input

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators
    corecore