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Abstract

We show that the minimum fill-in and the minimum interval graph comple-
tion of ad-trapezoid graph can be computed in tiMén?). We also show that
the treewidth and the pathwidth ofdatrapezoid graph can be computed by an
O(ntw(G)?~1) time algorithm. For both algorithmd,is supposed to be a fixed
positive integer and it is required that a suitable intersection model of the given
d-trapezoid graph is part of the input.

As a consequence, the minimum fill-in and the minimum interval graph com-
pletion as well as the treewidth and the pathwidth of a given trapezoid graph
(or permutation graph) can be computed in ti@:?), even if no intersection
model is part of the input.

1 Introduction

The notions of treewidth and pathwidth have come to play a central role in several
recent investigations in algorithmic graph theory, due to several applications inside
and outside graph theory. One reason for this interest is that many graph problems,
including many well known and important problems, become polynomial time, and
usually even linear time solvable (and become member of NC), when restricted to a
class of graphs with bounded tree- or pathwidth [1, 3, 4, 5, 7, 27]. In general, such
algorithms need to have a tree-decomposition or path-decomposition of suitable width
given together with the input graph. Hence, an important problem is to find tree-
decompositions (or path-decompositions) of minimum width. When the desired width
of the tree-decomposition is bounded by a constant, then this problem can be solved
in linear time [6]. However, the constant factor of this algorithm is exponential in
the treewidth (of yes-instances), which limits its practicality. Thus, it is interesting for
special classes of graphs to find algorithms, which are also polynomial in the treewidth.

*E-mail: kratsch@minet.uni-jena.de



A related graph problem is the minimum fill-in problem. In this problem, we want
to add as little edges as possible to a given graph to make it chordal. The importance of
this problem lies mainly in the fact that it is equivalent to finding an order of Gaussian
elimination steps of a (usually sparse) symmetric matrix, minimizing the number of
generated non-zero entries [32].

The problem “Given a grapl¥ and a positive integek, decide whether the
treewidth (resp. pathwidth) off is at mostk' remains NP-complete on cobipartite
graphs [2] and on bipartite graphs [21]. (The reader is refered to the preliminaries
section for definitions.) For some special classes of graphs, it has been shown that
the treewidth can be computed in polynomial time, as e.g. cographs [9], circular-arc
graphs [35], chordal bipartite graphs [23], permutation graphs [10], circle graphs [19],
cocomparability graphs of bounded dimension [25], cointerval graphs [16}and
trapezoid graphs [31]. The algorithm fditrapezoid graphs assumes thdtmapezoid
intersection model is part of the input.

In this paper we present an(n tw(G)?~") algorithm finding optimal tree- and
path-decompositions fai-trapezoid graphsg a fixed positive integer, where &
trapezoid diagram is part of the input. Note that the best timebound known up to
now is O (max(n?376 4, n2d+2)) [31].

On the other hand, there is &{n® R+n3 R3) algorithm computing the treewidth
and pathwidth of a given asteroidal triple-free graphrowertices with R minimal
separators [25]. This implies that the treewidth and the pathwidth dfrapezoid
graph can be computed by @{n??*3) algorithm that does not require an intersection
model as part of the input.

The knowledge on the algorithmic complexity of the minimum fill-in problem
when restricted to special graph classes is relatively small compared to that of the
treewidth and pathwidth problem, although this problem has very important applica-
tions in Gaussian matrix multiplication. Indeed, due to the lack of efficient algorithms
for finding an optimal solution, in practice one usually has to work with certain heuris-
tics for “approximating' a minimum fill-in.

The problem “Given a grapff and a positive integé, decide whether there is a
fill-in of G with at mostk edges' remains NP-complete on cobipartite graphs [38] and
on bipartite graphs [36]. The only known graph classes for which the minimum fill-in
can be computed by a polynomial time algorithm were for almost ten years the rela-
tively small classes of cographs [13] and bipartite permutation graphs [34]. Now poly-
nomial time algorithms for chordal bipartite graphs [20], multilolerance graphs [30] as
well as circle and circular-arc graphs [26] are available.

We claimed in [22] that the scanline approach used for designing an efficient
treewidth algorithm for permutation graphs in [10] can as well be used for the min-
imum fill-in problem on permutation graphs and cocomparability graphs of dimen-
sion at most/ (with an intersection model as part of the input) leadingt@?) and
O(n?) algorithms, respectively. By now the best known algorithm for the minimum
fill-in problem ond-trapezoid graphs with given intersection model has running time
O(max(n2'376 d’ n2d+2)) [31].

We are going to justify the above mentioned claim by presentin@@tf') algo-
rithm computing the minimum fill-in and the minimum interval graph completion for a
givend-trapezoid graph in timé&(n?), d a fixed positive integer, wheredatrapezoid
diagram is supposed to be part of the input.
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It is worth to mention that our algorithms are indeed natural extensions of the
treewidth algorithm for permutation graphs in [10]. (Note that each permutation graph
is a 2-trapezoid graph.) Finally, we emphasize that for trapezoid graphs we indeed
obtain fast algorithms, namely &n(n tw(G)) algorithm computing the treewidth and
pathwidth, and ai®(n?) algorithm computing the minimum fill-in and the minimum
interval graph completion. Here it is used that the kn@Wm?) recognition algorithm
for trapezoid graphs, given in [28], also computes a trapezoid diagram, if the input is
indeed a trapezoid graph.

2 Preliminaries

2.1 Preliminaries on treewidth, pathwidth and minimum fill-in

The concept of a chordal graph is fundamental for the treewidth and the minimum
fill-in of graphs.

Definition 2.1 A graph ischordalif it has no induced chordless cycle of length at least
four.

Chordal graphs (also called triangulated graphs) form a subclass of the perfect graphs.
For detailed information on classes of perfect graphs the reader is refered to [12, 18].

There are different ways to define the treewidth of a graph. The original definition by
Robertson and Seymour uses the concepttfexdecompositianFor more informa-

tion on tree-decompositions the reader is refered to the survey paper [7]. In this paper
we introduce the treewidth by means of triangulations. This turned out to be a fruitful
approach for many of the recently designed efficient treewidth algorithms for special
graph classes (see, e.g., [21]).

Definition 2.2 A triangulationof a graphG is a graphH with the same vertex set as
G, such that is a subgraph off and H is chordal.

We denote the maximum cardinality of a clique in a grapby w(G).

Definition 2.3 Thetreewidthof a graphG, denoted by t(“), is the smallest value of
w(H) <1 where the minimum is taken over all triangulatiofsof G.

The pathwidth can be defined in terms of triangulations of a special kind.

Definition 2.4 Aninterval graphis a graph of which the vertices can be put into one-
to-one correspondence with closed intervals on the real line, such that two vertices are
adjacent if and only if the corresponding intervals have a nhonempty intersection.

Notice that the interval graphs form a proper subclass of the chordal graphs [18].

Definition 2.5 Thepathwidthof a graphG, denoted by p¢&), is the smallest value
of w(H) <1 where the minimum is taken over all triangulatiodsof G for which H
is an interval graph.



Definition 2.6 A path-decompositioof a graphG = (V, E) is a sequence of subsets
of V, (Xy,...,X,), such thatJ,.,-, X; = V, for all {v,w} € E, there is an,
1<i<rwvwe X, andforallv € V, there arel,, ,, such that for all integerg,

1 <1, <j<r, <r & v e X; Thewidth of path-decompositiofX,,. .., X,) is
maxi<;<r |Xz| &1,

The following lemma shows the equivalence of the above definition of pathwidth and
the original one in terms of path-decompositions by Robertson and Seymour. For a
proof see for example [8, Theorem 29] and [21, Lemma 2.2.8].

Lemma 2.1 A graph G has a path-decomposition of width at mésif and only if
there is a triangulation of7 into an interval graphH such thatv(H) < k + 1.

The following characterization of interval graphs is due to Gilmore and Hoffman [17].

Lemma 2.2 G is an interval graph if and only if the maximal cliques @fcan be
ordered so that for every vertex the maximal cliques containing it occur consecutively.

Such an ordering of the maximal cliques is said to bermsecutive clique arrangement
(abbr. CCA) of G. By assigning to each vertex € V the interval[min{i | v €
X}, max{i | v € X,}], we directly get the following result.

Lemma 2.3 Let (X1, ..., X,) be a path-decomposition ¢f = (V, E). The graph
H = (V,F), obtained by making each séf;, 1 < ¢ < r a clique, (i.e., for all
v,w € Vv £ w: {v,w} € F < Ji:v,w € Xj;), is an interval graph that contains
G as a subgraph.

The decision problemsREEWIDTH andPATHWIDTH are NP-complete [2]. However,

for constantk, graphs with treewidth at mogdt are recognizable i®(n) time [6].

The large constants involved in these algorithms make them usually not very practical.
It is therefore of importance to find fully polynomial algorithms for treewidth and
pathwidth for special classes of graphs which are as large as possible. The aim of this
paper is to present fast algorithms for computing treewidth and pathwidth as well as
the minimum fill-in and the minimum interval graph completion on a relatively large
parameterized class of graphs.

Definition 2.7 Afill-in of the graphG = (V, E) is a setF’ of edges of the complement
of G such thatd = (V, EUF) is chordal. Theninimum fill-in of a graphG, denoted
by mf(G), is the smallest value ¢F (H )| <|E(G)| where the minimum is taken over
all triangulations H of G.

Hence solving the minimum fill-in problem on a graphis equivalent to finding a
triangulationH of G that has smallest number of edges among all triangulatiots of

Definition 2.8 An interval graph completionf the graphG = (V, E) is a setF of
edges of the complement Gfsuch thatH = (V, E U F) is an interval graph. The
minimum interval graph completioof a graphG, denoted by mi@), is the smallest
value of|[E(H)| <|E(G)| where the minimum is taken over all triangulatioAsof G
such thatH is an interval graph.



2.2 Preliminaries on minimal separators and triangulations

One of the main reasons why there exist fast algorithms for many problems when
restricted to graphs with bounded treewidth, is the existence of vertex separators of
bounded size. For designing efficient treewidth algorithms on special graph classes that
do not have bounded treewidth, vertex separators of bounded size have been replaced
by minimal separators (see, e.g., [10, 21]).

Definition 2.9 Let G = (V, E) be a graph. A subsef C V is an a, b-separator
for nonadjacent vertices and b, if the removal ofS separates: and b in distinct
connected components. If no proper subset ofatlbeseparator.S is itself ana, b-
separator therf is a minimala, b-separator. Aninimal separatof is a subsetS C V
such thatS' is a minimala, b-separator for some nonadjacent verticeandb.

The following lemmas must have been rediscovered many times (see, e.g., [18]).

Lemma 2.4 Let S be a minimals, b-separator ofG = (V, E), and letC, and C}, be
the connected components®@fV \ S], containinga and b respectively. Then every
vertex ofS has a neighbor irC, and a neighbor irCj,.

Lemma 2.5 S C V is a minimal separator of the grapd = (V, E) if and only if
G[V \ S] has at least two components for which every verteX bas a neighbor in
the component.

Using the characterization in Lemma 2.2, one can easily identify the minimal separa-
tors of an interval graph which has been shown in [25].

Lemma 2.6 Let A, A,,..., A, be a consecutive clique arrangement of an interval
graphG. Then the minimal separators Gfare the setsA; N A;1,i € {1,2,...,q<

1.

For designing efficient treewidth algorithms on special graph classes, the restriction to
certain types of triangulations has been used by different authors (see, e.g., [10, 21, 25,
31)).

Definition 2.10 A triangulation H of a graphG is a minimal triangulationof G if no
proper subgraph off is a triangulation ofG.

Minimal triangulations have already been studied in [33]. Among others, the authors
give the following characterization of minimal triangulations.

Theorem 2.1 Let H be a triangulation of a grapliz. ThenH is a minimal triangu-
lation of G if and only if for all edgese € E(H) \ E(G) the graphH <-e is not
chordal.

The following theorem of Mhring, given in [29], is important for us.

Theorem 2.2 Any minimal triangulation of an asteroidal triple-free graph is an in-
terval graph. Hence p¢&) = tw(G) and mf{G) = mic(G) for each asteroidal
triple-free graph.



(See [14] for more informations on asteroidal triple-free graphs.) @hapezoid
graphs are a subclass of the asteroidal triple-free graphs for anydlixel@nce we
may concentrate on designing an algorithm solving tReEEWIDTH (and hence the
PATHWIDTH) problem as well as an algorithm solving theniMuM FILL -IN (and
hence theNTERVAL GRAPH COMPLETION) problem.

The following characterization of minimal triangulations has been shown in [24].

Theorem 2.3 Let H be a triangulation ofG = (V, E) and let A(H) be the set of
minimal separators off. ThenH is a minimal triangulation of the grapli7 if and
only if the following three conditions are satisfied:

1. If e andb are nonadjacent vertices i then every minimat, b-separator inH
is also a minimak, b-separator inG.

2. If S'is a minimal separator irfH and C' is the vertex set of a connected compo-
nent of H[V \ 5], thenC induces also a connected componentiiy \ S].

3. H = Ga(m), Which is the graph obtained fro by adding edges between all
pairs of vertices contained in the same Sebr everyS € A(H).

2.3 Preliminaries on blocks

Blocks and realizations of blocks are useful concepts for designing treewidth and min-
imum fill-in algorithms that are based on minimal separators.

Definition 2.11 A 1-block of G is a pair B = (.S, C'), whereS is a minimal separator
of G andC is a connected component@fV \ S]. The graph obtained fro¥[S U C]
by making a clique of is called therealizationof B and is denoted by (S, C).

The treewidth of a graph can be computed from the treewidth of the realizations of all
1-blocks of the graph (see also [25]).

Lemma 2.7 LetG = (V, E) be a graph which is not complete. Then

tw(G) = mSin max tw(R(S,())
where the minimum is taken over all minimal separatsref G and the maximum is
taken over all connected componet6t®f G[V \ S].
A similar lemma can be obtained for the minimum fill-in of a graph (see [25]).
Lemma 2.8 LetG = (V, E) be a graph which is not complete. Then

mfi(G) = min (fill (S) + 3" mfi(R(S, o)))
C

where the minimum is taken over all minimal separatSref G and the summation
is over all connected componertisof G[V \ 5], where fillS) = (1) < |E(G[S])|
denotes the number of edges added{6§] for makingS a clique.

The important fact is that the treewidth of a graph and the minimum fill-in of a
graph can in principle be computed by recursive algorithms that inspect all minimal
separators. In general such an algorithm does not have a polynomially bounded run-
ning time. However for various graph classes refinements of this approach lead to
efficient algorithms.



Figure 1:3-trapezoid graplty and3-trapezoid modeD(G)

3 Thed-trapezoid graphs

In this section we defing-trapezoid graphs anditrapezoid diagrams. Our definition

of d-trapezoid graphs is a mixture of the definitions in [15, 31], chosen such that it
generalizes the definition of cocomparability graphs of dimengdiogiven in [25],

and such thatl-trapezoid graphs are exactly the cocomparability graphs of partially
ordered sets of interval dimension at mast

Definition 3.1 Letd be a fixed positive integef, > 1. Then ad-trapezoid diagranof
agraphG = (V, E) assigns to each vertexof G a collection ofd intervals

T(v) = (I8, 78] : I8,rl € {1,2,...,2n}, 11 <riic{l1,2,...d})

vt v v v v

such that for eachi € {1,2,...d} and any pair of different vertices,w € V the
intervals[i?,r¢] and[i% , r’,] have no endpoint in common. Furthermofe, w} € E

v U wrtw A R C X
if and only if either there is an € {1,2,...,d} such that[i;,r;] and [l;,,r;,] have
nonempty intersection or there aiec {2,3,...,d} suchthat!~! < ri=1 < [i-1 <

rivtandll, <ri <l <ri.

We use the following visualizing of étrapezoid diagram. Draw parallel horizontal
lines labelledD,, Do, ... Dy from bottom to the top. Mark slotg, 2,. .., 2n in unit
distance from left to right on each of the horizontal lines. Then for any vertex/

we obtain a polygom, by drawing line segments between consecutive points in the
chaini! 12, .. .14 2 rd=1  rl Il The polygon@, is said to be al-trapezoid

Consequently{v, w} € F if and only if @, and@,, have nonempty intersection. (See
Fig. 1 for an example.)

Definition 3.2 A graph( is ad-trapezoid graph if it has @-trapezoid diagram.
The following theorem is a consequence of Definition 3.1 (see [15, 31]).

Theorem 3.1 Thed-trapezoid graphs are exactly the cocomparability graphs of par-
tially ordered sets of interval dimension at mdst

Unfortunately, the problem “Given a partially ordered Betdecide whether the in-
terval dimension ofP is at mostd' is NP-complete for any fixed > 3 [37]. Hence

for fixedd > 3, computing al-trapezoid diagram of the given graph, if it is indeed a
d-trapezoid graph, means solving an NP-complete problem. Moreover, at the present
not even reasonable approximation algorithms for the interval dimension of a partially
ordered set are known. Thus assuming thétteapezoid diagram is part of the input

is a very strong assumption far> 3.



The situation is much better fare {1,2}. Thel-trapezoid graphs are exactly the
interval graphs and th-trapezoid graphs are exactly the trapezoid graphs by Theo-
rem 3.1. There is a linear time recognition algorithm for interval graphs computing an
interval model if the input graph is an interval graph [11]. There i©)4n?) recogni-
tion algorithm for trapezoid graphs computing a trapezoid model if the input graph is
a trapezoid graph [28].

Moreover, Theorem 3.1 shows that for any fixéthe d-trapezoid graphs form a
subclass of the cocomparability graphs. Hence the clag¢rapezoid graphs is a sub-
class of the asteroidal triple-free graphs for any fide@onsequently, by Theorem 2.2,
the treewidth and pathwidth of&trapezoid graph coincide, and the minimum fill-in
and the minimum interval graph completion of-&rapezoid graph coincide.

The concept of a scanline is crucial to various efficient treewidth algorithms devel-
oped in the last years [10, 19, 21, 31].

Definition 3.3 A scanlinein a d-trapezoid diagram is a polyline determined by one
endpointon a coordinates’ € {0.5,1.5,...,2n + 0.5}, € {1,2,...,d}, on each of
the d horizontal lines of thei-trapezoid diagram, obtained by drawing line segments
between the endpoints on consecutive horizontal lines.

Definition 3.4 Lets be a scanline of @-trapezoid diagram of a grapty. ThenS(s)
is the set of those verticesfor which the scanling has a nonempty intersection with

Qo-

The following results can easily be obtained in the same fashion as the corresponding
result for permutation graphs given in [10].

Lemma 3.1 LetG be ad-trapezoid graph withi-trapezoid diagranD(G). For every
minimal z, y-separator.S of G there is a scanlines in D(G), which is between the
d-trapezoids(), and(,, such thatS = S(s).

Corollary 3.1 The number of minimal separators ofldrapezoid graphG onn > 2
vertices is at most2n <3).

4 Realizations

The next two sections give most of the technical results of the paper. In particular
they contain all theorems and lemmas for verifying the correctness of our algorithms.
Throughout this section we assume tGat (V, E) is ad-trapezoid graph with a fixed
d-trapezoid diagrar®(G).

Definition 4.1 Lets; and sy be two different scanlines ar@, a d-trapezoid in ad-
trapezoid diagranD(G). Thens; is left of s, if st < sb forall i € {1,2,...d}.

Furthermore, thel-trapezoid@, is betweerthe scanlines; ands, if st <1f < ri <
sh foralli e {1,2,...,d}.

Definition 4.2 Let s; and s be two different scanlines such that is left of so. A
candidate componerit = C(s1, s2) is a subgraph of7 induced by the set of those
verticesv of G for which the correspondingd-trapezoid@, in the diagramD(G) has
one of the following properties:



Figure 2:d-trapezoid diagram of a candidate compon@rdnd its realizatiom?(C').

e (), is between the scanlines and ss.

¢ (J, has nonempty intersection with at least one of the two scanlines.

We identify the candidate compone@it = C(sy,s2) with the d-trapezoid diagram
obtained fromD(G) by removing alld-trapezoids for which the corresponding vertex
does not belong t6' and by adding the two scanlines andss.

Definition 4.3 LetC' = C(s1, s2) be a candidate component. We definertradization
R(C) as the graph obtained fror¥, by adding all edges between verticesSgk, )
and between vertices 6f(s,) (i.e. the two set§'(s1) and S(s2) are cliques inR(C)).

Lemma 4.1 If C = C(sy, s2) is a candidate component ofiatrapezoid graph& with
d-trapezoid diagranD(G) then the realizatiorR(C) is ad-trapezoid graph.

Proof. ConsiderD(G). For every vertexs € S(s1) there is a horizontal lineD;
such that? < s}, and for every pair of nonadjacent verticess € S(s;) there is a
horizontal lineD; such that! < s% andl’, < si.

We construct a diagram of the realizatiat{C) from the diagram of”, by re-
ordering for any horizontal lind;, i € {1,2,...,d}, all points ofd-trapezoids that
are left ofs? and right ofs’, respectively. The diagram remains unchanged in the area
between the two scanlines andss.

For eachi € {1,...,d} we replace the point&, ! < s by a collection of con-
secutive new point’ positioned totally left of a collection of consecutive new points
r!i. Inside these collections we choose an arbitrary order. This procedure transforms
disjoint intervalsi?, ¢ ] and[l%,, ri ] with ¢ I}, < s} into intervals[l, 7] and[l/, r!’]
with the pointmax{I’ : I} < s%} in common. This implies tha$(s;) is a clique in
the transformed diagram.

Analogously we transform the points right ef. For every lineD; we reorder the
pointsi:, ri > si to obtain a collection of new left point§ left of a collection of
new right pointsr’?. Similarly S(s2) is a clique in the transformed diagram. Hence
this construction gives @trapezoid diagram for the realizatid®(C'), thusR(C') is a
d-trapezoid graph. (See Fig. 2 for an illustration of the described construction)

Let C = C(s1,s2) be a candidate component ofdarapezoid graphG. Consider
the d-trapezoid diagram oR(C), obtained from the diagram @f by the procedure,



described in the proof of Lemma 4.1. Suppd3€’) has a minimal separatds.
By Lemma 3.1 there is a scanlinein the d-trapezoid diagram oR(C') such that
S = S(s).

Definition 4.4 LetC = C(s1, s2) be a candidate component with realizatitC'). A
scanlinet in the d-trapezoid diagram isicefor C' = C(sy, s3) if for all endpointst?,
i€{1,2,...,d}:

si <t < sé.

Lemma 4.2 LetC' = C(s1, s2) be a candidate component ofiarapezoid graph®,
R(C) the realization ofC' and S a minimala, b-separator ofR(C). Then there is a
nice scanlines* for C' = C(s1, $2) such thatS = S(s*).

Proof. Consider thel-trapezoid diagram of?(C') with the scanlines, s, obtained
by the construction of Lemma 4.1. Létbe a minimala, b-separator ofR(C'). By
Lemma 3.1 there is a scanlinein the d-trapezoid diagram oR2(C') such thatS =
S(s). Moreover, the scanline is between the-trapezoids), and@), in the diagram
of R(C). Without loss of generality assume th@y is left of Q,. Hencel! < ri <
st < It < ri for each horizontal linéD;, i € {1,2,...d}.

Supposes is not nice forC' = C(s1,s2). Hence eithers’ < s! for somei €
{1,2,...,d} ors} < s/ forsomej € {1,2,...,d}. Without loss of generality assume
st < s} for somei € {1,2,...,d}. Thena € S(s;) impliesb ¢ S(s1) sincea and
b are not adjacent iR(C'). Let s* be the scanline for which on each horizontal line
its endpoint coincides with the one obr s;, more preciselys*)? := max(s’, s%) for
eachi € {1,2,...,d} (see Fig. 3). LeS* = S(s*). Suppose tha$ # S*.

Case 1.5\ S* # ().

Letp € S\ S*. By Lemma 2.4 every vertex &f has a neighbor in the component
of R(C) \ S that containd. Thed-trapezoid corresponding to such a neighbaof p
must be right of the scanline Hence(), intersectss;, thusq anda are adjacent in
R(C) andgq is in the component aR(C') \ S containinga, contradicting the choice of
q.

Case 2:5*\ S # 0.

Letp € $*\ S. Hence there is ane {1,2,...,d} such thats’ < I} < s} = (s*)’
for thed-trapezoid@,. Hencep ¢ S implies thats is betweern), and@,. Howevera
andp are adjacent itkR(C') sinceQ,, and@, both interseck;, a contradiction.

Consequently* is a nice scanline witly(s*) = S unlesss* intersectss,. In this case
the analogous construction appliedstoands, gives the wanted nice scanline. O

Lemma 4.2 shows that all-trapezoids intersecting the scanlineorrespond to ver-
tices of the candidate componefit = C(si, s2). Hence a nice scanline generat-
ing a minimal separatof of a realizationR(C') can be chosen in the region of the
d-trapezoid diagram of the candidate compon€nbetweens; and s, since in that
region thed-trapezoid diagram oR(C') is exactly the same as the original diagram
D(G). (See the proof of Lemma 4.1.)

Definition 4.5 sq, s1, 89, ..., Sr_1, 8¢ IS @nice sequencef scanlines in al-trapezoid
diagram of a graph if s; is left of s; 4 for eachi € {0,1,...,r <1}. We denote by
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Figure 3:d-trapezoid diagram oR(C) and the nice scanling®, that is indicated by
the heavy dots.

H = Gy, 4,,...5, the graph obtained from’ by adding an edge between those pairs of
nonadjacent vertices andv of G for which there is a scanling;, i € {0,1,...,r},
that intersects both-trapezoids,, and@,.

Consider ad-trapezoid diagram of a grapfi. We denote by, the scanline which
lies totally to the left of alld-trapezoids and byr the scanline which lies totally to
the right of alld-trapezoids. We are now ready to prove a characterization of minimal
triangulations ofi-trapezoid graphs via scanlines.

Theorem 4.1 Let G = (V,E) be ad-trapezoid graph withd-trapezoid diagram
D(G). Let H be any minimal triangulation of7 and let A(H) be the set of
all minimal separators ofH. Then there is a nice sequence of scanlings=
805 81,82, -+, 8r—1, 8y = Sr IN D(G) such that

(I) A(H) = {5(81)75(32)7'--75(81“71)}’
(") H= Gso,sl,...,sr1
(i) C(so,81),C(s1,82),...,C(sr—1,58,) is aconsecutive clique arrangementdf

Proof. We prove the following claim by induction on the number of vertices.

Let H be any minimal triangulation of d-trapezoid graphG with d-trapezoid
diagramD(G). Let s',s"” be two scanlines irD(G) such thats’ is left of s” and
G is the realization of’(s’,s”). Then there is a nice sequence of scanliffes=
50,81, 82, - -+58r1,8 = " inD(G) such that

() A(H) ={S(s1),5(s2),...,S(sr-1)},
(”) H = Gso,sl,...,sry

(iii) C(so,s1),C(s1,82),...,C(sr—1,8,) IS aconsecutive clique arrangement
of H.

Notice that the claim immediately implies the theorem by taking s;, ands” = sg.

11



Let H be any minimal triangulation of thé-trapezoid grapttz and A(H) be the
set of all minimal separators @f. The graphH is an interval graph by Theorem 2.2.
If H is a complete graph thed = H by Theorem 2.3 and the assertion holds with the
nice sequence’, s”. Hence we may assume thitis not complete.

Let S be any minimal separator df. SupposeS is a minimala, b-separator of
H. ThenS is a minimala, b-separator of7. SinceG is the realization of (s', s”), by
Lemma 4.2, there is a scanlizgen D(G) such thats is nice forC(s',s"), S = S(s)
ands is between), and@Q;,. Consequently the sequen¢es, s” is nice.

Consider the candidate components = C(s’,s) andCy = C(s, s”) and their
realizationsR; = R(C1) andRy = R(C5). Sinces is betweerR, and@, we get that
C: andC; are both smaller that. R;, j € {1,2}, is obtained fromC; by making
S'into a clique. H; = H|[C}] is an interval graph. HencHj; is a triangulation ofR;
sinceH = G5y by Theorem 2.3 and' € A(H).

We claim thatH; is a minimal triangulation of?;, j € {1,2}. Suppose not and
assume w.l.o.g. thdf] is a proper subgraph df; and a minimal triangulation aR;.
Let H' be the graph that has the same vertex séf @nd edge seE(H|) U E(Hy),
thus H' is a proper spanning subgraph Hf. FurthermoreS is a clique of H' and
S =V(H])NV(Hz).

SupposeZ would be a chordless cycle Hi’ having length at least four. Sindé|
and H- are chordal there is a vertexe V(H7) \ S and avertew € V(H,)\ Sin Z.
Since there is no edge between a vertek ¢f71) \ S and a vertex o¥/ (Hz)\ S in H',
the cycleZ must contain at least two vertices 8f that are not consecutive vertices in
Z. Thus the cycleZ has a chord connecting these two vertices$pé contradiction.
ConsequentlyH’ is a chordal graph and therefore a triangulatioiizahat is a proper
subgraph of the minimal triangulatiol, a contradiction.

Let sp := s', 51 := s andsy := s”. As bothR; and Ry have fewer vertices ag,
by induction it follows that for each € {1,2}, there is a nice sequence of scanlines
8j—1,841,- -5 8jq;» 85 IN D(R;) such that

(@) A(Hj) ={S(sj1)s---+5(sjq;) }»
(b) Hj = Rj and

Sj—l,sjl,---,Sij >S5
(c) C(ijl, Sjl),C(SjI, Sj2), e ,C(quj,Sj) isa CCA Oij.

Hences’,si1,...,S1q, 8, 821, .., 524, 8" IS @ nice sequence of scanlinesMG)
since the sequencg 1, s;1,. - -, 5jq;, Sj IN D(R;) is nice forj € {1,2} and the con-
struction of D(R;) from D(G) does not change scanlines, i.e., any scanlioED (R;)
has exactly the same endpoifiton the horizontal lineD;, for all i € {1,2,...,d}, in
both diagram&(R;) andD(G).

Using induction, we can see th@{s', s11),C(s11, s12),...,C(s14,,5) is @ CCA
of H; andC(s, s21),C(s21, $22), - -.,C(S24.,5") is @ CCA of Hy. Moreover,S is a
cligue and a minimal separator of the interval gradghandS = V(H;) N V(Ha).
SinceV (H,) is the vertex set of (s', s) andV (Hs) is the vertex set of (s, s”) we
obtain that each component 6fV \ S] is either completely contained iH; or it is
completely contained itH,. SinceH is a minimal triangulation o7, Theorem 2.3
implies thatS is a minimal separator af and that the components 6fV" \ S] and
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H[V \ S] coincide. Thus there is no edge betwdéfH,) \ S andV (Hy) \ Sin H.
Furthermore notice thaf is not a maximal clique i and thatS is a maximal clique
in neitherH; nor H, sinceS C C(s14,,5) andS C C(s, s21).

Consequently, any maximal clique &f is a subset of/(H;) or it is a subset of
V(H3) and thus each maximal clique &f is a maximal clique either ii{; or in
H, but not in both. Furthermore each maximal cligueHr or Hs is obviously a
cligue of H and it is a maximal one since there is no edge betwiéeH,) \ S and
V(Hz)\Sin H. Taking into account theff = S(s) is a subset of the cliqu&X sy, , 5)
andC(s, 821) we get that’(s’, 811), C(SU, 812), - ,C(Slql , 8), C(S, 821), C(Sgl, 822),
...,C(s24,,s") isa CCA ofH. Hence (jii) is true.

Let G’ be any interval graph and let;, As,..., A, be any CCA ofG'. Then
Lemma 2.6 implies that for each minimal separar of G’ there is aj €
{1,2,...,q &1} such thatS’ = A; N A;;1. By (c) we have thaC(s', s11),
C(SU, 812), - ,C(slql,s) is a CCA of H, and that C(S, 821),6(821, 822), ey
C(82q2, S”) isa CCA ofHs. MOFGOVQFC(S’, 311), C(SH, 812), Ce ,C(Slql , S), C(S, 321),
C(s21,522),...,C(s24,,5") is @ CCA of H by (iii). Applying Lemma 2.6 to these
three consecutive cliqgue arrangements we obtain that any minimal separfais of
either equal t5' = C(s14,,5) N C(s,s21) Or it is a minimal separator off; and Hs,
respectively. Similarly, Lemma 2.6 applied to these three consecutive clique arrange-
ments implies that each minimal separatoffor H, is a minimal separator off .
ThusA(H) = A(H;) U A(H2) U{S}. By (a), A(H;) = {S(s11),...,5(s101)}
and A(HQ) = {5(821), RN 5(32q2)}, thus A(H) = {5(811), R 7S(Slq1)} U
{S(s21),...,5(s24,)} U{S(s)} and (i) is true. Then, Theorem 2.3 immediately im-
plies that (ii) is true, and this completes the proof. O

The theorem has interesting consequences for computing the treewidth and the mini-
mum fill-in of d-trapezoid graphs.

Definition 4.6 Letsr, = sg, $1,892,...,8-_1, S = sSg be a nice sequence of scanlines
in a d-trapezoid diagranD(G). Then for alli € {1,2,...,r <1}, first(s;) is the set
of those pairgu, v} of nonadjacent vertices @f for which s; is the leftmost scanline
of the nice sequence that intersects b@thand Q.

Corollary 4.1 LetG = (V, E) be ad-trapezoid graph with al-trapezoid diagram
D(G).

(i) There is a nice sequence of scanlings= sg, $1, 92, -..,8r-1, 8 = sg IN D(QG)
such thatC(sg, s1),C(s1,s2),...,C(sr—1,s,) IS @ consecutive clique arrange-
ment of a minimal triangulation af into an interval graphH with

tw(G) = pwWG) =w(H) &1 = o max (IC(siy8i41)| ©1).

(i) There is a nice sequence of scanlings= s, s/, sh,...,s,_,s; = sr iNn D(G)
such thatH = Gt s voos] is a minimum triangulation and a minimum inter-
val graph completion of7, Uﬁ;} fill (S(s})) is @ minimum fill-in of G, where

2

fill(S(s)), i € {1,2,...,l<1}, is the set of edges addeddbfor makingS|(s})
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a clique. Furthermore
-1
mic(G) = mfi(G) = [first(s})|.
i=1

Proof. Let H be a minimal triangulation off with tw(G) = w(H) < 1. By Theo-
rem 4.1 there is a nice sequence of scanlines= sg, s1, $2,...,8-_1,8, = SR iN
D(G) such thatd = G 5, ss.....s, aNdC(sg,s1),C(s1,52),...,C(sy—1,5,) isa CCA
of H. HencetW(G) = pW(G) = w(H) sl = maxp<;<r—1 (|C(SZ, 3i+1)| @1).

Let H be a minimum triangulation (and a minimum interval graph com-
pletion) of G. By Theorem 4.1 there is a nice sequence of scanliffes=
80,51, 8,---,8,_1,5, = sr IN D(G) such thatH = Gy o« .« and A(H) =
{5(s1),8(sh),...,5(s;_,)}- Therefore the edges of the fill-iB(H) \ E(G) are ex-
actly those edges added@for making S(s;) a clique for each € {1,2,...,] <1}.
Hence for any edgéu,v} € E(H) \ E(G), there is a leftmost scanline in the se-
guence that intersects bath, and@,. Consequently, we obtaimic(G) = mfi(G) =
S first(s!)|- 0

5 Small scanlines and dense sequences

The notion of a small scanline has been introduced in [10]. It is useful in a treewidth
algorithm since a minimal separatSiwith |S| > k + 1 can not be made into a clique
for obtaining a minimal triangulatio®/ with w(H) < k + 1.

Definition 5.1 Consider ad-trapezoid diagram. A scanlineis k-smallif it intersects
with at most: + 1 d-trapezoids.

Lemma 5.1 Anyd-trapezoid diagram ha®)(nk?~") k-small scanlines. I and s’,
i,j € {1,2,...d}, are endpoints of &-small scanlines then|s’ <s7| < 2(k + 1).

Proof. Consider two parallel horizontal line; and Dj, 7,5 € {1,2,...d}, of the
diagram. Lets be a scanline with endpointé ands’/ on D; and D;, respectively.

Similar to the argumentation in the corresponding proof for permutation graphs
in [10] the number ofi-trapezoids having empty intersection with the scanfineat
most

min(s’,s7) <1/2  2n <max(s,s7) +1/2 ©|si o8|
=ns——/—.
2 2
Hence the number of-trapezoids intersecting the scanlings at leastl /2 |s* <s7|.

Thus for anyk-small scanline hold$/2 |s' <»s/| < k + 1 for eachi, j € {1,2,...d}.
Hence there ar® (nk?=') k-small scanlines. O

Definition 5.2 Scanlines is a predecessoof scanlinet in a d-trapezoid diagram if

s is left of ¢ and both have common endpoints on all horizontal lines except one. On
this horizontal line (sayD;) there is exactly one point of @&trapezoid between the
endpoints of andt (i.e. t/ = s7 +1).
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Definition 5.3 A nice sequence of scanlines = sg, s1,82,...,8--1,8- = Sg ina
d-trapezoid diagram is said to bedense sequenad scanlines ifs; is a predecessor
of s;41 foreachi € {0,1,...,r &1}.

Lemma 5.2 LetG = (V, E) be ad-trapezoid graph with @-trapezoid diagranD (G)

and letsy, = sg, s1, 82, ---,8-_1, 8, = Sg be a nice sequence of scanlines. Then
tW(G) =PWG) < _ max _ |C(s;,si0)] &1
1=0,1,...,r—

and

r—1

mfi(G) = mic(G) < [first(s;)].
i=1
Moreover, ifs;, = sg, s1,892,...,8-_1, 8- = SR IS a dense sequence of scanlines

thenH = G, 5, .. s, IS atriangulation ofG into an interval graph and’(s;, s;+1) is
aclique ofH for eachi € {0,1,...,r &1},

Proof. First note that Theorem 2.2 impliés(G) = pw(G) andmfi(G) = mic(G) for
all d-trapezoid graphs. Let, = sg, s1,82,...,S--1, 8 = Sgr be a nice sequence of
scanlines in al-trapezoid diagran®(G) of a graphG.

The following convexity property is important. Lél, be ad-trapezoid inD(G)
such thats; ands;, both intersect),. Theni < j < k implies thats; also intersects
Qv. Thusv € C(si,si41) andv € C(sg, sk+1) impliesv € C(s;,s;41) forall j €
{i+ 1,i+2,...,k <1} by Definition 4.2 and the convexity property. Therefore
each vertexw € V appears in the subsef$s;, si+1),C(si+1, Si+2),---,C(Sk—1, k)
for somei, k with 0 < ¢ < k < r. ThusC(sg, s1),C(s1,82),---,C(8r—1,8r) IS @
path-decomposition af. Consequently

tw(G) = pWw(G) < _max IC(si,si41)] 1.

Let H be the graph obtained frof by adding an edge between two nonadjacent
verticesu andv of G, if there is a candidate componefits;, s;+1), for somei €
{0,1,...,r <1}, containingu andv. ThereforeV (G) = V(H), E(G) C E(H) and
C(so,81),C(s1,82),...,C(sr—1,5s,) are cliques ofl.

Then H is an interval graph by Lemma 2.3 and thereféfds a triangulation of
G. SinceY.'Z| [first(s;)| is exactly the number of edges addeditdo obtain H, we
obtain

mfi(G) = mic(G) < ril [first(s;)|.
i=1

Let s;, = sg,81,892,...,8-_1,8 = sg be a nice sequence of scanlines that is
also dense. Let € {0,1,...,r &1}. Then for eachu,v € C(s;,si+1) With u
andv nonadjacent inG, the d-trapezoids®,, and @, either both intersect; or both
intersects; 1, thusu andwv are adjacent irf. Consequently(s;, s;+1) is a clique of
H =Gy, 5,5 foreachi € {0,1,...,r &1}

Recall thatC(sg,s1),C(s1,582),...,C(sr—1,5,) iS a path-decomposition ofr.
ThusH = Gy, ... 5. IS atriangulation oG into an interval graph by Lemma 2.3.

O

Using Corollary 4.1 we obtain the following lemma.
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Lemma5.3 Let G = (V,E) be ad-trapezoid graph with ai-trapezoid diagram
D(G).

() If tw(G) < Ek then there is a dense sequence ke$mall scanliness;, =
804551582, -++,8p_1,8+ = SR IN D(G) satisfying|C(si,si+1)| < k+ 1 for all
i€{0,1,...,r<1}.

(i) There is a dense sequence of scanlifies- s, s}, s5,...,5,_1,5; = s IN D(G)
such that mfiG) = Y121 [first(s!)].

Proof. Consider (i). By Corollary 4.1 there is a nice sequence of scanlipes
805 81,82, --+,8r—1,8 = Sr In D(G) such thatC(sg, s1),C(s1,52),...,C(sr—1,5r)

is a consecutive cligue arrangement of a minimal triangulatio& @fto an interval
graphH with tw(G) = pW(G) = w(H) ©1 = maxo<i<r—1 (|C(84, si+1)| ©1). Thus
each scanling; is k-small, fori € {1,2,...,r<1}, sinceS(s;) C C(s;, si+1) implies
1S (si)] < |C(84,8i+1)] <tW(G)+1 < k+1. (Trivially s;, andsy arek-small for each
positive integek.) Therefores;, = sg, s1, 82, ..., S-_1, 8 = SR IS @ nice sequence of
k-small scanlines.

All the setsC(s;, si+1), @ € {0,1,...,r <1}, are cliques iNH = G s, ,50,....5,
by Theorem 4.1. Hence for any scanlisiebetweens; ands;; and any pair ofi-
trapezoidsy, and@, that both intersect*, the vertices: andv belong taC(s;, $i+1),
thus they are adjacent .

Consequently our particular nice sequence of scanlines can be transformed
into a dense sequence of scanlines by adding a suitable sequence of scanlines
8715 Sizr -+ 51, DEIWEENS; ands; 41 for all i € {0,1,...,r <1}, Then|S(s™)| <
IC(si,8i+1)] < k 4+ 1. Hence each scanling® added between; and s; 1 is k-
small. Thus we obtain a new sequenge = 3, 51,32,...,5¢-1,8¢ = Sr Which
is a dense sequence/omall scanlines. Furthermore for everg {0,1,...,q <1},
C(84,58j41) € C(si,si41) for somei € {0,1,...,r <1} by the construction of the
new sequence, implying (5;, sj41)| < k+ 1.

Consider (ii). By Corollary 4.1 there is a nice sequence of scanlipes=

50,581,585, ...,8_1,5, = swr in D(G) such thatdH = Gy, st,...,¢, 1S @ mMinimum tri-
angulation andnic(G) = mfi(G) = Zé;} [first(s})|. Analogously to (i) this sequence
can be transformed into a dense sequesice: sy, 8, 8, ..., 5,_1,5, = s satisfy-
ing mic(G) = mfi(G) = S22/ [first(&})). O

Lemmas 5.2 and 5.3 justify the correctness of our algorithms that will be described in
the next section.

6 Algorithms

We present in this section our two polynomial time algorithms computing the treewidth
and the pathwidth as well as the minimum fill-in and the minimum interval graph
completion of ad-trapezoid graph that is given withdatrapezoid diagrany a fixed
positive integer. Notice that for any input to one of the algorithms the congtamnt
equal to the number of horizontal lines in the given diagram.
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6.1 Treewidth and pathwidth

We start with the algorithm computing the treewidth and pathwidth ket a positive
integer. First we present a procedure that checks whether the treewidth of the given
d-trapezoid graph does not exceled

Construct a directed acyclic graphi,(G) as follows. The vertices of the graph
are thek-small scanlines oD(G). There is an arc from scanlineto ¢ in Wy (G) if
and only if

e the scanlines is a predecessor of the scanlihe D(G) and
e the candidate componefi{s, ) has at mosk + 1 vertices.
The next lemma follows immediately from Lemma 5.2 and 5.3(i).

Lemma 6.1 G has treewidth at most if and only if there is a directed path fromj,
tosg in Wk(G)

Lemma 6.2 The graphivy(G) hasO(nk?~!) vertices and)(nk?~") edges.

Proof. The bound on the number of vertices is shown in Lemma 5.1. For each scanline
s there are at most scanlines for which s is a predecessor. Hence the outdegree of
a vertex is at most. O

Now we describe the procedure which determines if the treewidth &frapezoid
graphG given with ad-trapezoid diagrar®(G) is at mostk.

Step 1 Construct the acyclic digrapW; (G) as follows. Compute alk-small scan-
lines in D(G) and compute all ordered pairs bfsmall scanlines and¢ for
which s is a predecessor ofand|C(s,t)| < k + 1.

Step 2 If there exists a path i, (G) from sy, to sg, then report that the treewidth of
G is at mostk. If such a path does not exist, then report that the treewidth of
is larger thark.

Lemma 6.3 The running time of the procedure@nk® ).

Proof. We describe any scanlingby the vector(s', s2, .. ., s%) of its endpoints on the
horizontal lines of the diagram. The procedure processes in step 1 only those scanlines
s=(s',5%,...,s%) satisfyings' €2k 2 < s* < s' +2k+2foralli € {2,3,...,d}
(with obvious boundary conditions), since aismall scanlines fulfil this condition by
Lemma5.1.

We denote byd(s!, s2, ..., s%) the number ofi-trapezoids that intersect the scan-
line s = (s',s2,...,s%) and we denote by‘(s',s%,...,s%),i € {1,2,...,d}, the
number ofd-trapezoids intersecting the scanlise= (s',s2,...,s%) or the scan-
line t = (s',s2,...,s" s + 1,51, ..., s%). Thuss = (s',s2,...,5%) is k-
small if and only ifA(s',s2,...,5%) < k+1and|C(s,t)| < k + 1 if and only if
Bi(s',s%,...,s%) < k + 1. Notice that4(0.5,0.5,...,0.5) = 0. All other values of
A(s',s%,...,s%) andBi(s',s2,...,s?) are computed using the following rules. For
alli € {1,2,...,d} holds
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(i) Bi(s',s%,...,s%) = A(s',s2,..., 5% if the uniqued-trapezoid with a point be-
tween the scanlines = (s',s%,...,s%) andt = (s',s2,...,s"7 " s* + 1,
s+ ..., s%) on the horizontal lineD; intersects the scanline, otherwise
Bi(s',s%,...,s%) = A(s',s%,...,s%) + 1.

(i) A(s',s%,..., 57758 4+ 1,57 s%) = Bi(s',s%,...,5%) if the uniqued-
trapezoid with a point between the scanlines= (s!,s2,...,s%) andt =
(s',s2,..., s st 1,51 . s%) onthe horizontal lineD; intersectg, oth-

erwiseA(s', s2,...,s%) = B(s', s%,...,s%) o1.

During step 1 the procedure comput@$nk?!) values of A(s',s?,...,s%) and

O(nk?") values of Bi(s',s2,...,s%). Clearly it can be checked in constant time

whether the uniqué-trapezoid with a point between the scanlines (s', s2,.. ., s%)

andt = (s',s%,...,s7 1, s + 1,s'T!,... s%) on the horizontal lineD;, i €

{1,2,...,d}, intersectss andt, respectively. Hence step 1 takes timénk?1).
Computing whether there is a directed path fremto sg in Wi(G) takes

O(nk% ") time by a standard single source shortest-path algorithm in a directed

acyclic graph. Hence the total procedure can be implemented to rQqrik?")

time. O

Finally we show that the procedure can be used for obtaining an algorithm that com-
putes the treewidth.

Theorem 6.1 For each positive integed, there is anO(n tw(G)?*~1) algorithm com-
puting the treewidth and the pathwidth ofdatrapezoid graphG for which a d-
trapezoid diagranD(G) is part of the input.

Proof. The algorithm first computes a numbgrsuch that’./2 < tw(G) < L. This

can be done, using the procedure described abguez tw(G)) times, in overall time
O(ntw(G)4~1), by calling the procedure fdr = 1,2,4, ... until it reports tw(G) <

k' for the first time. Take this value éfasL and construct the directed grafh, (G).

Then modifyW;, (G) as follows. Put weights on the arcs, saying how many vertices are
in the corresponding candidate component. Then search for a pathfriomg, such

that the maximum over the weights of arcs in the path is minimized. This maximum
weight minus one gives the exact treewidt(G). A corresponding shortest-path
algorithm for directed acyclic graphs has running tide: tw(G)4—1). O

6.2 Minimum fill-in and interval graph completion

Now we show how to compute the minimum fill-in and the minimum interval graph
completion of ad-trapezoid graplty with d-trapezoid diagran®(G). The algorithm

we present directly computesfi(G) by solving a single source shortest-path problem
on a suitable directed acyclic graph.

Construct a directed acyclic graﬂTﬁ (G) as follows. The vertices of the graph are
the scanlines ob(G). There is an arc from scanlineto ¢ in W (G) if and only if the
scanlines is a predecessor of The length of an arc from to ¢ is the number of pairs
of d-trapezoids(),, and @, in the diagram that have empty intersection, do not both
intersects but both intersect.
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Lemma 6.4 mfi(G) is equal to the length of a shortest directed path frnto sg in
W(G).

Proof. By Lemma 5.2mfi(G) < 32—} [first(s;)| for each nice sequence of scanlines

SI, = 80,81,82,---,8—1,8 = sg IN D(G). Furthermore by Lemma 5.3(ii), there
is a dense sequence of scanlings= s, s},s5,...,s,_y,5; = sr in D(G) such
that mfi(G) = Y-!Z1 |[first(s})|. The shortest paths fromy, to sg are in one-to-one

correspondence to the dense sequences of scanlife&dh. Finally the length of
an arc froms to ¢ is defined such that it is equal tfirst(¢)| if the dense sequence is
81, =80,...,8,t,...,8, = sr. This completes the proof. O

Similar to Lemma 6.2 one obtains the following.
Lemma 6.5 The graphi¥ (G) hasO(n?) vertices and)(n?) edges.

Hence the algorithm that computes the minimum fill-in e-aapezoid grapld: given
with ad-trapezoid diagran®(G) is as follows.

Step 1 Construct the acyclic digrapi}Tf(G). Compute the length of all arcs W(G).
Step 2 Compute the length of a shortest path frepto sg in VT/(G).

Theorem 6.2 For each positive integed, there is anO(n¢) algorithm computing the
minimum fill-in and the minimum interval graph completion of a givkettapezoid
graph G where ad-trapezoid diagranD(G) is part of the input.

Proof. Again we describe any scanlineby the vector(s', s2,...,s?) of its end-
points on the horizontal lines of the diagram. For any scanline (s',s?,...,s%)
we denote byL(s!,s?,...,s%) the number ofi-trapezoids that are left of the scan-
line s. In a preprocessing the algorithm compulgs', s2, ..., s%) for all scanlines
s = (s',s2,..., 5% in the diagram.

This can be done quite similar to step 1 of the procedure in the previous sub-
section. ClearlyL(0.5,0.5,...,0.5) = 0. All other values ofL(s!,s2,...,s%) can
be computed by the following rule. For alc {1,2,...,d}, L(s',s2,...,5s" 71, s' +
1, s, s%) = L(st, s2, ..., s%) +1if the uniqued-trapezoid with a point between

the scanlines = (s',s2,...,s%) andt = (s',s2,...,s"7 1, s" + 1,5, ..., 5% on
the horizontal lineD; is left of ¢, otherwiseL(s', s2,...,s" 1, s +1,s'TL, ... %) =
L(s',s%,...,s%). This preprocessing can be done in timg:?) since there ar@(n?)

scanlines by Corollary 3.1.

Then the algorithm computes the length of all arc3#6{G). Consider an arc
from s to ¢t. First the uniquel-trapezoid(, with a point between the scanlines=
(st,s%,...,8%) andt = (s',s2,...,s" "1, st + 1,5, ... s?) is determined. IQ,
intersectss then the length of the arc s Otherwise the length is equal to the number
of d-trapezoids that intersect but notQ,. Hence the length of the arc is exactly
L} ©0.5,12 ©0.5,...,1¢ ©0.5) < L(s',s%,...,s%). Consequently the directed
acyclic graphi¥ (G) can be constructed in tin@(n?).

Computing a shortest path from, to sg in W (G) can be done in timé(n?) by
a standard single source shortest-path algorithm in a directed acyclic graph. Hence the
overall running time of the algorithm 9 (n?). O
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7 Conclusions

In this paper we described two algorithms designed by a “scanline approach' that has
been introduced in [10]. Both polynomial time algorithms solve NP-complete prob-
lems when these problems are restricted@tmpezoid graphs, if d-trapezoid diagram

of the given graph is part of the input & fixed positive integer). A® (ntw(G)41)
algorithm computes the treewidth and the pathwidth. Am?) algorithm computes

the minimum fill-in and the minimum interval completion of the input graph. Both
algorithms have running times that are significantly better than the best known up to
know, i.e., O(max(n?3764 n24+2)) [31] (giving running timeO(n5) for trapezoid
graphs). Indeed we show that there are algorithms for both problems for which the or-
der of magnitude of the running time is equal to the order of magnitude of the number
of (k-small) scanlines in d-trapezoid diagram of the input graph. Hence improving
our algorithms seems to require completely new ideas.

Our algorithms are simple and efficient for smdjllin particular ford = 2. The
2-trapezoid graphs are exactly the trapezoid graphs and there(s&) algorithm
computing a trapezoid diagram for a given trapezoid graph [28]. Hence we obtain
O(n?) algorithms, even if no trapezoid diagram is part of the input. Furthermore we
obtain anO(n?) algorithm for computing the minimum fill-in of permutation graphs,
as announced in [22], since permutation graphs are a subclass of the trapezoid graphs.
(Notice that the known minimum fill-in algorithm for bipartite permutation graphs
of [34] has running tim& (n?).) Clearly our algorithms also apply to cocomparability
graphs of dimension at mogif they are given with a suitable intersection model (see
[25]) since they are a subclass of iirapezoid graphs.

Our algorithms ford-trapezoid graphs require an intersection model as part of
the input. This is not surprising. On one hand, all four problems that we consid-
ered are NP-complete on cocomparability graphs [2, 38], hence there is no polyno-
mial time algorithm ford-trapezoid graphs if the parameigiis unbounded, unless
P=NP. On the other hand, the recognition problemddrapezoid graphs] > 3, is
NP-complete [37]. Nevertheless it has been shown that using a different approach
an O(n3¢*3) time algorithm computing the treewidth and pathwidth detrapezoid
graphsd > 3, can be designed that does not require an intersection model as part of
the input [21, 25].
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