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Abstract

We show that the minimum fill-in and the minimum interval graph comple-
tion of ad-trapezoid graph can be computed in timeO(nd). We also show that
the treewidth and the pathwidth of ad-trapezoid graph can be computed by an
O(n tw(G)d�1) time algorithm. For both algorithms,d is supposed to be a fixed
positive integer and it is required that a suitable intersection model of the given
d-trapezoid graph is part of the input.

As a consequence, the minimum fill-in and the minimum interval graph com-
pletion as well as the treewidth and the pathwidth of a given trapezoid graph
(or permutation graph) can be computed in timeO(n2), even if no intersection
model is part of the input.

1 Introduction

The notions of treewidth and pathwidth have come to play a central role in several
recent investigations in algorithmic graph theory, due to several applications inside
and outside graph theory. One reason for this interest is that many graph problems,
including many well known and important problems, become polynomial time, and
usually even linear time solvable (and become member of NC), when restricted to a
class of graphs with bounded tree- or pathwidth [1, 3, 4, 5, 7, 27]. In general, such
algorithms need to have a tree-decomposition or path-decomposition of suitable width
given together with the input graph. Hence, an important problem is to find tree-
decompositions (or path-decompositions) of minimum width. When the desired width
of the tree-decomposition is bounded by a constant, then this problem can be solved
in linear time [6]. However, the constant factor of this algorithm is exponential in
the treewidth (of yes-instances), which limits its practicality. Thus, it is interesting for
special classes of graphs to find algorithms, which are also polynomial in the treewidth.

�E-mail: kratsch@minet.uni-jena.de
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A related graph problem is the minimum fill-in problem. In this problem, we want
to add as little edges as possible to a given graph to make it chordal. The importance of
this problem lies mainly in the fact that it is equivalent to finding an order of Gaussian
elimination steps of a (usually sparse) symmetric matrix, minimizing the number of
generated non-zero entries [32].

The problem `Given a graphG and a positive integerk, decide whether the
treewidth (resp. pathwidth) ofG is at mostk' remains NP-complete on cobipartite
graphs [2] and on bipartite graphs [21]. (The reader is refered to the preliminaries
section for definitions.) For some special classes of graphs, it has been shown that
the treewidth can be computed in polynomial time, as e.g. cographs [9], circular-arc
graphs [35], chordal bipartite graphs [23], permutation graphs [10], circle graphs [19],
cocomparability graphs of bounded dimension [25], cointerval graphs [16] andd-
trapezoid graphs [31]. The algorithm ford-trapezoid graphs assumes that ad-trapezoid
intersection model is part of the input.

In this paper we present anO(n tw(G)d�1) algorithm finding optimal tree- and
path-decompositions ford-trapezoid graphs,d a fixed positive integer, where ad-
trapezoid diagram is part of the input. Note that the best timebound known up to
now isO(max(n2:376 d; n2d+2)) [31].

On the other hand, there is anO(n5R+n3R3) algorithm computing the treewidth
and pathwidth of a given asteroidal triple-free graph onn vertices withR minimal
separators [25]. This implies that the treewidth and the pathwidth of ad-trapezoid
graph can be computed by anO(n3d+3) algorithm that does not require an intersection
model as part of the input.

The knowledge on the algorithmic complexity of the minimum fill-in problem
when restricted to special graph classes is relatively small compared to that of the
treewidth and pathwidth problem, although this problem has very important applica-
tions in Gaussian matrix multiplication. Indeed, due to the lack of efficient algorithms
for finding an optimal solution, in practice one usually has to work with certain heuris-
tics for `approximating' a minimum fill-in.

The problem `Given a graphG and a positive integerk, decide whether there is a
fill-in of G with at mostk edges' remains NP-complete on cobipartite graphs [38] and
on bipartite graphs [36]. The only known graph classes for which the minimum fill-in
can be computed by a polynomial time algorithm were for almost ten years the rela-
tively small classes of cographs [13] and bipartite permutation graphs [34]. Now poly-
nomial time algorithms for chordal bipartite graphs [20], multilolerance graphs [30] as
well as circle and circular-arc graphs [26] are available.

We claimed in [22] that the scanline approach used for designing an efficient
treewidth algorithm for permutation graphs in [10] can as well be used for the min-
imum fill-in problem on permutation graphs and cocomparability graphs of dimen-
sion at mostd (with an intersection model as part of the input) leading toO(n2) and
O(nd) algorithms, respectively. By now the best known algorithm for the minimum
fill-in problem ond-trapezoid graphs with given intersection model has running time
O(max(n2:376 d; n2d+2)) [31].

We are going to justify the above mentioned claim by presenting anO(nd) algo-
rithm computing the minimum fill-in and the minimum interval graph completion for a
givend-trapezoid graph in timeO(nd), d a fixed positive integer, where ad-trapezoid
diagram is supposed to be part of the input.
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It is worth to mention that our algorithms are indeed natural extensions of the
treewidth algorithm for permutation graphs in [10]. (Note that each permutation graph
is a 2-trapezoid graph.) Finally, we emphasize that for trapezoid graphs we indeed
obtain fast algorithms, namely anO(n tw(G)) algorithm computing the treewidth and
pathwidth, and anO(n2) algorithm computing the minimum fill-in and the minimum
interval graph completion. Here it is used that the knownO(n2) recognition algorithm
for trapezoid graphs, given in [28], also computes a trapezoid diagram, if the input is
indeed a trapezoid graph.

2 Preliminaries

2.1 Preliminaries on treewidth, pathwidth and minimum fill-in

The concept of a chordal graph is fundamental for the treewidth and the minimum
fill-in of graphs.

Definition 2.1 A graph ischordalif it has no induced chordless cycle of length at least
four.

Chordal graphs (also called triangulated graphs) form a subclass of the perfect graphs.
For detailed information on classes of perfect graphs the reader is refered to [12, 18].

There are different ways to define the treewidth of a graph. The original definition by
Robertson and Seymour uses the concept of atree-decomposition. For more informa-
tion on tree-decompositions the reader is refered to the survey paper [7]. In this paper
we introduce the treewidth by means of triangulations. This turned out to be a fruitful
approach for many of the recently designed efficient treewidth algorithms for special
graph classes (see, e.g., [21]).

Definition 2.2 A triangulationof a graphG is a graphH with the same vertex set as
G, such thatG is a subgraph ofH andH is chordal.

We denote the maximum cardinality of a clique in a graphG by !(G).

Definition 2.3 Thetreewidthof a graphG, denoted by tw(G), is the smallest value of
!(H)� 1 where the minimum is taken over all triangulationsH ofG.

The pathwidth can be defined in terms of triangulations of a special kind.

Definition 2.4 An interval graphis a graph of which the vertices can be put into one-
to-one correspondence with closed intervals on the real line, such that two vertices are
adjacent if and only if the corresponding intervals have a nonempty intersection.

Notice that the interval graphs form a proper subclass of the chordal graphs [18].

Definition 2.5 Thepathwidthof a graphG, denoted by pw(G), is the smallest value
of !(H)� 1 where the minimum is taken over all triangulationsH ofG for whichH
is an interval graph.
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Definition 2.6 A path-decompositionof a graphG = (V;E) is a sequence of subsets
of V , (X1; : : : ;Xr), such that

S
1�i�rXi = V , for all fv; wg 2 E, there is ani,

1 � i � r, v; w 2 Xi, and for allv 2 V , there arelv; rv , such that for all integersj,
1 � lv � j � rv � r , v 2 Xj . Thewidth of path-decomposition(X1; : : : ;Xr) is
max1�i�r jXij � 1.

The following lemma shows the equivalence of the above definition of pathwidth and
the original one in terms of path-decompositions by Robertson and Seymour. For a
proof see for example [8, Theorem 29] and [21, Lemma 2.2.8].

Lemma 2.1 A graphG has a path-decomposition of width at mostk if and only if
there is a triangulation ofG into an interval graphH such that!(H) � k + 1.

The following characterization of interval graphs is due to Gilmore and Hoffman [17].

Lemma 2.2 G is an interval graph if and only if the maximal cliques ofG can be
ordered so that for every vertex the maximal cliques containing it occur consecutively.

Such an ordering of the maximal cliques is said to be aconsecutive clique arrangement
(abbr. CCA) ofG. By assigning to each vertexv 2 V the interval[minfi j v 2
Xig;maxfi j v 2 Xig], we directly get the following result.

Lemma 2.3 Let (X1; : : : ;Xr) be a path-decomposition ofG = (V;E). The graph
H = (V; F ), obtained by making each setXi, 1 � i � r a clique, (i.e., for all
v; w 2 V; v 6= w: fv; wg 2 F , 9i : v; w 2 Xi), is an interval graph that contains
G as a subgraph.

The decision problemsTREEWIDTH andPATHWIDTH are NP-complete [2]. However,
for constantk, graphs with treewidth at mostk are recognizable inO(n) time [6].
The large constants involved in these algorithms make them usually not very practical.
It is therefore of importance to find fully polynomial algorithms for treewidth and
pathwidth for special classes of graphs which are as large as possible. The aim of this
paper is to present fast algorithms for computing treewidth and pathwidth as well as
the minimum fill-in and the minimum interval graph completion on a relatively large
parameterized class of graphs.

Definition 2.7 A fill-in of the graphG = (V;E) is a setF of edges of the complement
ofG such thatH = (V;E [F ) is chordal. Theminimum fill-in of a graphG, denoted
by mfi(G), is the smallest value ofjE(H)j � jE(G)j where the minimum is taken over
all triangulationsH ofG.

Hence solving the minimum fill-in problem on a graphG is equivalent to finding a
triangulationH of G that has smallest number of edges among all triangulations ofG.

Definition 2.8 An interval graph completionof the graphG = (V;E) is a setF of
edges of the complement ofG such thatH = (V;E [ F ) is an interval graph. The
minimum interval graph completionof a graphG, denoted by mic(G), is the smallest
value ofjE(H)j � jE(G)j where the minimum is taken over all triangulationsH ofG
such thatH is an interval graph.
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2.2 Preliminaries on minimal separators and triangulations

One of the main reasons why there exist fast algorithms for many problems when
restricted to graphs with bounded treewidth, is the existence of vertex separators of
bounded size. For designing efficient treewidth algorithms on special graph classes that
do not have bounded treewidth, vertex separators of bounded size have been replaced
by minimal separators (see, e.g., [10, 21]).

Definition 2.9 Let G = (V;E) be a graph. A subsetS � V is an a; b-separator
for nonadjacent verticesa and b, if the removal ofS separatesa and b in distinct
connected components. If no proper subset of thea; b-separatorS is itself ana; b-
separator thenS is a minimala; b-separator. Aminimal separatorS is a subsetS � V
such thatS is a minimala; b-separator for some nonadjacent verticesa andb.

The following lemmas must have been rediscovered many times (see, e.g., [18]).

Lemma 2.4 LetS be a minimala; b-separator ofG = (V;E), and letCa andCb be
the connected components ofG[V n S], containinga and b respectively. Then every
vertex ofS has a neighbor inCa and a neighbor inCb.

Lemma 2.5 S � V is a minimal separator of the graphG = (V;E) if and only if
G[V n S] has at least two components for which every vertex ofS has a neighbor in
the component.

Using the characterization in Lemma 2.2, one can easily identify the minimal separa-
tors of an interval graph which has been shown in [25].

Lemma 2.6 LetA1; A2; : : : ; Aq be a consecutive clique arrangement of an interval
graphG. Then the minimal separators ofG are the setsAi \Ai+1, i 2 f1; 2; : : : ; q�
1g.

For designing efficient treewidth algorithms on special graph classes, the restriction to
certain types of triangulations has been used by different authors (see, e.g., [10, 21, 25,
31]).

Definition 2.10 A triangulationH of a graphG is a minimal triangulationofG if no
proper subgraph ofH is a triangulation ofG.

Minimal triangulations have already been studied in [33]. Among others, the authors
give the following characterization of minimal triangulations.

Theorem 2.1 LetH be a triangulation of a graphG. ThenH is a minimal triangu-
lation of G if and only if for all edgese 2 E(H) n E(G) the graphH � e is not
chordal.

The following theorem of M¨ohring, given in [29], is important for us.

Theorem 2.2 Any minimal triangulation of an asteroidal triple-free graph is an in-
terval graph. Hence pw(G) = tw(G) and mfi(G) = mic(G) for each asteroidal
triple-free graph.
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(See [14] for more informations on asteroidal triple-free graphs.) Thed-trapezoid
graphs are a subclass of the asteroidal triple-free graphs for any fixedd. Hence we
may concentrate on designing an algorithm solving theTREEWIDTH (and hence the
PATHWIDTH) problem as well as an algorithm solving theMINIMUM FILL -IN (and
hence theINTERVAL GRAPH COMPLETION) problem.

The following characterization of minimal triangulations has been shown in [24].

Theorem 2.3 Let H be a triangulation ofG = (V;E) and let�(H) be the set of
minimal separators ofH. ThenH is a minimal triangulation of the graphG if and
only if the following three conditions are satisfied:

1. If a andb are nonadjacent vertices inH then every minimala; b-separator inH
is also a minimala; b-separator inG.

2. If S is a minimal separator inH andC is the vertex set of a connected compo-
nent ofH[V n S], thenC induces also a connected component inG[V n S].

3. H = G�(H), which is the graph obtained fromG by adding edges between all
pairs of vertices contained in the same setS for everyS 2 �(H).

2.3 Preliminaries on blocks

Blocks and realizations of blocks are useful concepts for designing treewidth and min-
imum fill-in algorithms that are based on minimal separators.

Definition 2.11 A 1-block ofG is a pairB = (S;C), whereS is a minimal separator
ofG andC is a connected component ofG[V nS]. The graph obtained fromG[S[C]
by making a clique ofS is called therealizationofB and is denoted byR(S;C).

The treewidth of a graph can be computed from the treewidth of the realizations of all
1-blocks of the graph (see also [25]).

Lemma 2.7 LetG = (V;E) be a graph which is not complete. Then

tw(G) = min
S

max
C

tw(R(S;C))

where the minimum is taken over all minimal separatorsS of G and the maximum is
taken over all connected componentsC ofG[V n S].

A similar lemma can be obtained for the minimum fill-in of a graph (see [25]).

Lemma 2.8 LetG = (V;E) be a graph which is not complete. Then

mfi(G) = min
S

 
fill (S) +

X
C

mfi(R(S;C))

!
where the minimum is taken over all minimal separatorsS of G and the summation
is over all connected componentsC of G[V n S], where fill(S) =

�jSj
2

�
� jE(G[S])j

denotes the number of edges added toG[S] for makingS a clique.

The important fact is that the treewidth of a graph and the minimum fill-in of a
graph can in principle be computed by recursive algorithms that inspect all minimal
separators. In general such an algorithm does not have a polynomially bounded run-
ning time. However for various graph classes refinements of this approach lead to
efficient algorithms.
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Figure 1:3-trapezoid graphG and3-trapezoid modelD(G)

3 Thed-trapezoid graphs

In this section we defined-trapezoid graphs andd-trapezoid diagrams. Our definition
of d-trapezoid graphs is a mixture of the definitions in [15, 31], chosen such that it
generalizes the definition of cocomparability graphs of dimensiond, given in [25],
and such thatd-trapezoid graphs are exactly the cocomparability graphs of partially
ordered sets of interval dimension at mostd.

Definition 3.1 Letd be a fixed positive integer,d � 1. Then ad-trapezoid diagramof
a graphG = (V;E) assigns to each vertexv ofG a collection ofd intervals

I(v) = h[liv; r
i
v ] : liv; r

i
v 2 f1; 2; : : : ; 2ng; liv < riv; i 2 f1; 2; : : : dgi

such that for eachi 2 f1; 2; : : : dg and any pair of different verticesv; w 2 V the
intervals[liv; r

i
v ] and [liw; r

i
w] have no endpoint in common. Furthermore,fv; wg 2 E

if and only if either there is ani 2 f1; 2; : : : ; dg such that[liv; r
i
v] and [liw; r

i
w] have

nonempty intersection or there arei 2 f2; 3; : : : ; dg such thatli�1v < ri�1v < li�1w <
ri�1w andliw < riw < liv < riv.

We use the following visualizing of ad-trapezoid diagram. Drawd parallel horizontal
lines labelledD1;D2; : : : Dd from bottom to the top. Mark slots1; 2; : : : ; 2n in unit
distance from left to right on each of the horizontal lines. Then for any vertexv 2 V
we obtain a polygonQv by drawing line segments between consecutive points in the
chain l1v; l

2
v ; : : : l

d
v ; r

d
v ; r

d�1
v ; : : : ; r1v ; l

1
v . The polygonQv is said to be ad-trapezoid.

Consequentlyfv; wg 2 E if and only ifQv andQw have nonempty intersection. (See
Fig. 1 for an example.)

Definition 3.2 A graphG is ad-trapezoid graph if it has ad-trapezoid diagram.

The following theorem is a consequence of Definition 3.1 (see [15, 31]).

Theorem 3.1 Thed-trapezoid graphs are exactly the cocomparability graphs of par-
tially ordered sets of interval dimension at mostd.

Unfortunately, the problem `Given a partially ordered setP , decide whether the in-
terval dimension ofP is at mostd' is NP-complete for any fixedd � 3 [37]. Hence
for fixed d � 3, computing ad-trapezoid diagram of the given graph, if it is indeed a
d-trapezoid graph, means solving an NP-complete problem. Moreover, at the present
not even reasonable approximation algorithms for the interval dimension of a partially
ordered set are known. Thus assuming that ad-trapezoid diagram is part of the input
is a very strong assumption ford � 3.
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The situation is much better ford 2 f1; 2g. The1-trapezoid graphs are exactly the
interval graphs and the2-trapezoid graphs are exactly the trapezoid graphs by Theo-
rem 3.1. There is a linear time recognition algorithm for interval graphs computing an
interval model if the input graph is an interval graph [11]. There is anO(n2) recogni-
tion algorithm for trapezoid graphs computing a trapezoid model if the input graph is
a trapezoid graph [28].

Moreover, Theorem 3.1 shows that for any fixedd thed-trapezoid graphs form a
subclass of the cocomparability graphs. Hence the class ofd-trapezoid graphs is a sub-
class of the asteroidal triple-free graphs for any fixedd. Consequently, by Theorem 2.2,
the treewidth and pathwidth of ad-trapezoid graph coincide, and the minimum fill-in
and the minimum interval graph completion of ad-trapezoid graph coincide.

The concept of a scanline is crucial to various efficient treewidth algorithms devel-
oped in the last years [10, 19, 21, 31].

Definition 3.3 A scanlinein a d-trapezoid diagram is a polyline determined by one
endpointon a coordinatesi 2 f0:5; 1:5; : : : ; 2n+ 0:5g, i 2 f1; 2; : : : ; dg, on each of
thed horizontal lines of thed-trapezoid diagram, obtained by drawing line segments
between the endpoints on consecutive horizontal lines.

Definition 3.4 Lets be a scanline of ad-trapezoid diagram of a graphG. ThenS(s)
is the set of those verticesv for which the scanlines has a nonempty intersection with
Qv.

The following results can easily be obtained in the same fashion as the corresponding
result for permutation graphs given in [10].

Lemma 3.1 LetG be ad-trapezoid graph withd-trapezoid diagramD(G). For every
minimal x; y-separatorS of G there is a scanlines in D(G), which is between the
d-trapezoidsQx andQy, such thatS = S(s).

Corollary 3.1 The number of minimal separators of ad-trapezoid graphG onn � 2
vertices is at most(2n� 3)d.

4 Realizations

The next two sections give most of the technical results of the paper. In particular
they contain all theorems and lemmas for verifying the correctness of our algorithms.
Throughout this section we assume thatG = (V;E) is ad-trapezoid graph with a fixed
d-trapezoid diagramD(G).

Definition 4.1 Let s1 ands2 be two different scanlines andQv a d-trapezoid in ad-
trapezoid diagramD(G). Thens1 is left of s2 if si1 � si2 for all i 2 f1; 2; : : : dg.
Furthermore, thed-trapezoidQv is betweenthe scanliness1 ands2 if si1 � liv < riv �
si2 for all i 2 f1; 2; : : : ; dg.

Definition 4.2 Let s1 and s2 be two different scanlines such thats1 is left of s2. A
candidate componentC = C(s1; s2) is a subgraph ofG induced by the set of those
verticesv ofG for which the correspondingd-trapezoidQv in the diagramD(G) has
one of the following properties:
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s1 2s 2s s1

Figure 2:d-trapezoid diagram of a candidate componentC and its realizationR(C).

� Qv is between the scanliness1 ands2.

� Qv has nonempty intersection with at least one of the two scanlines.

We identify the candidate componentC = C(s1; s2) with the d-trapezoid diagram
obtained fromD(G) by removing alld-trapezoids for which the corresponding vertex
does not belong toC and by adding the two scanliness1 ands2.

Definition 4.3 LetC = C(s1; s2) be a candidate component. We define therealization
R(C) as the graph obtained fromC, by adding all edges between vertices ofS(s1)
and between vertices ofS(s2) (i.e. the two setsS(s1) andS(s2) are cliques inR(C)).

Lemma 4.1 If C = C(s1; s2) is a candidate component of ad-trapezoid graphGwith
d-trapezoid diagramD(G) then the realizationR(C) is ad-trapezoid graph.

Proof. ConsiderD(G). For every vertexv 2 S(s1) there is a horizontal lineDi

such thatliv < si1, and for every pair of nonadjacent verticesv; w 2 S(s1) there is a
horizontal lineDi such thatliv < si1 andliw < si1.

We construct a diagram of the realizationR(C) from the diagram ofC, by re-
ordering for any horizontal lineDi, i 2 f1; 2; : : : ; dg, all points ofd-trapezoids that
are left ofsi1 and right ofsi2, respectively. The diagram remains unchanged in the area
between the two scanliness1 ands2.

For eachi 2 f1; : : : ; dg we replace the pointsliv; r
i
w < si1 by a collection of con-

secutive new pointsl0iv positioned totally left of a collection of consecutive new points
r0iw. Inside these collections we choose an arbitrary order. This procedure transforms
disjoint intervals[liv; r

i
v] and[liw; r

i
w] with liv; l

i
w < si1 into intervals[l0iv ; r

0i
v ] and[l0iw; r

0i
w]

with the pointmaxfl0iu : liu < si1g in common. This implies thatS(s1) is a clique in
the transformed diagram.

Analogously we transform the points right ofs2. For every lineDi we reorder the
points liv; r

i
w > si2 to obtain a collection of new left pointsl0iv left of a collection of

new right pointsr0iv . Similarly S(s2) is a clique in the transformed diagram. Hence
this construction gives ad-trapezoid diagram for the realizationR(C), thusR(C) is a
d-trapezoid graph. (See Fig. 2 for an illustration of the described construction.)2

Let C = C(s1; s2) be a candidate component of ad-trapezoid graphG. Consider
thed-trapezoid diagram ofR(C), obtained from the diagram ofC by the procedure,
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described in the proof of Lemma 4.1. SupposeR(C) has a minimal separatorS.
By Lemma 3.1 there is a scanlines in the d-trapezoid diagram ofR(C) such that
S = S(s).

Definition 4.4 LetC = C(s1; s2) be a candidate component with realizationR(C). A
scanlinet in thed-trapezoid diagram isnice for C = C(s1; s2) if for all endpointsti,
i 2 f1; 2; : : : ; dg:

si1 � ti � si2:

Lemma 4.2 LetC = C(s1; s2) be a candidate component of ad-trapezoid graphG,
R(C) the realization ofC andS a minimala; b-separator ofR(C). Then there is a
nice scanlines� for C = C(s1; s2) such thatS = S(s�).

Proof. Consider thed-trapezoid diagram ofR(C) with the scanliness1, s2 obtained
by the construction of Lemma 4.1. LetS be a minimala; b-separator ofR(C). By
Lemma 3.1 there is a scanlines in the d-trapezoid diagram ofR(C) such thatS =
S(s). Moreover, the scanlines is between thed-trapezoidsQa andQb in the diagram
of R(C). Without loss of generality assume thatQa is left of Qb. Hencelia < ria <
si < lib < rib for each horizontal lineDi, i 2 f1; 2; : : : dg.

Supposes is not nice forC = C(s1; s2). Hence eithersi < si1 for somei 2
f1; 2; : : : ; dg or sj2 < sj for somej 2 f1; 2; : : : ; dg. Without loss of generality assume
si < si1 for somei 2 f1; 2; : : : ; dg. Thena 2 S(s1) implies b 62 S(s1) sincea and
b are not adjacent inR(C). Let s� be the scanline for which on each horizontal line
its endpoint coincides with the one ofs or s1, more precisely(s�)i := max(si; si1) for
eachi 2 f1; 2; : : : ; dg (see Fig. 3). LetS� = S(s�). Suppose thatS 6= S�.

Case 1:S n S� 6= ;:
Let p 2 S n S�. By Lemma 2.4 every vertex ofS has a neighbor in the component

of R(C) n S that containsb. Thed-trapezoid corresponding to such a neighborq of p
must be right of the scanlines. HenceQq intersectss1, thusq anda are adjacent in
R(C) andq is in the component ofR(C) nS containinga, contradicting the choice of
q.

Case 2:S� n S 6= ;:
Let p 2 S� n S. Hence there is ani 2 f1; 2; : : : ; dg such thatsi < lip < si1 = (s�)i

for thed-trapezoidQp. Hencep 62 S implies thats is betweenQa andQp. Howevera
andp are adjacent inR(C) sinceQa andQp both intersects1, a contradiction.

Consequentlys� is a nice scanline withS(s�) = S unlesss� intersectss2. In this case
the analogous construction applied tos� ands2 gives the wanted nice scanline. 2

Lemma 4.2 shows that alld-trapezoids intersecting the scanlines correspond to ver-
tices of the candidate componentC = C(s1; s2). Hence a nice scanlines generat-
ing a minimal separatorS of a realizationR(C) can be chosen in the region of the
d-trapezoid diagram of the candidate componentC betweens1 ands2 since in that
region thed-trapezoid diagram ofR(C) is exactly the same as the original diagram
D(G). (See the proof of Lemma 4.1.)

Definition 4.5 s0; s1; s2; : : : ; sr�1; sr is anice sequenceof scanlines in ad-trapezoid
diagram of a graphG if si is left ofsi+1 for eachi 2 f0; 1; : : : ; r � 1g. We denote by
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Figure 3:d-trapezoid diagram ofR(C) and the nice scanlines�, that is indicated by
the heavy dots.

H = Gs0;s1;:::;sr the graph obtained fromG by adding an edge between those pairs of
nonadjacent verticesu andv of G for which there is a scanlinesi, i 2 f0; 1; : : : ; rg,
that intersects bothd-trapezoidsQu andQv.

Consider ad-trapezoid diagram of a graphG. We denote bysL the scanline which
lies totally to the left of alld-trapezoids and bysR the scanline which lies totally to
the right of alld-trapezoids. We are now ready to prove a characterization of minimal
triangulations ofd-trapezoid graphs via scanlines.

Theorem 4.1 Let G = (V;E) be a d-trapezoid graph withd-trapezoid diagram
D(G). Let H be any minimal triangulation ofG and let �(H) be the set of
all minimal separators ofH. Then there is a nice sequence of scanlinessL =
s0; s1; s2; : : : ; sr�1; sr = sR in D(G) such that

(i) �(H) = fS(s1); S(s2); : : : ; S(sr�1)g,

(ii) H = Gs0;s1;:::;sr ,

(iii) C(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a consecutive clique arrangement ofH.

Proof. We prove the following claim by induction on the number of vertices.
Let H be any minimal triangulation of ad-trapezoid graphG with d-trapezoid

diagramD(G). Let s0; s00 be two scanlines inD(G) such thats0 is left of s00 and
G is the realization ofC(s0; s00). Then there is a nice sequence of scanliness0 =
s0; s1; s2; : : : ; sr�1; sr = s00 in D(G) such that

(i) �(H) = fS(s1); S(s2); : : : ; S(sr�1)g,

(ii) H = Gs0;s1;:::;sr ,

(iii) C(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a consecutive clique arrangement
of H.

Notice that the claim immediately implies the theorem by takings0 = sL ands00 = sR.

11



LetH be any minimal triangulation of thed-trapezoid graphG and�(H) be the
set of all minimal separators ofH. The graphH is an interval graph by Theorem 2.2.
If H is a complete graph thenG = H by Theorem 2.3 and the assertion holds with the
nice sequences0; s00. Hence we may assume thatH is not complete.

Let S be any minimal separator ofH. SupposeS is a minimala; b-separator of
H. ThenS is a minimala; b-separator ofG. SinceG is the realization ofC(s0; s00), by
Lemma 4.2, there is a scanlines in D(G) such thats is nice forC(s0; s00), S = S(s)
ands is betweenQa andQb. Consequently the sequences0; s; s00 is nice.

Consider the candidate componentsC1 = C(s0; s) andC2 = C(s; s00) and their
realizationsR1 = R(C1) andR2 = R(C2). Sinces is betweenQa andQb we get that
C1 andC2 are both smaller thanG. Rj, j 2 f1; 2g, is obtained fromCj by making
S into a clique.Hj = H[Cj ] is an interval graph. HenceHj is a triangulation ofRj

sinceH = G�(H) by Theorem 2.3 andS 2 �(H).
We claim thatHj is a minimal triangulation ofRj , j 2 f1; 2g. Suppose not and

assume w.l.o.g. thatH 0
1 is a proper subgraph ofH1 and a minimal triangulation ofR1.

LetH 0 be the graph that has the same vertex set asH and edge setE(H 0
1) [ E(H2),

thusH 0 is a proper spanning subgraph ofH. FurthermoreS is a clique ofH 0 and
S = V (H 0

1) \ V (H2).
SupposeZ would be a chordless cycle inH 0 having length at least four. SinceH 0

1

andH2 are chordal there is a vertexu 2 V (H 0
1) n S and a vertexv 2 V (H2) n S in Z.

Since there is no edge between a vertex ofV (H 0
1)nS and a vertex ofV (H2)nS in H 0,

the cycleZ must contain at least two vertices ofS, that are not consecutive vertices in
Z. Thus the cycleZ has a chord connecting these two vertices ofS, a contradiction.
Consequently,H 0 is a chordal graph and therefore a triangulation ofG that is a proper
subgraph of the minimal triangulationH, a contradiction.

Let s0 := s0, s1 := s ands2 := s00. As bothR1 andR2 have fewer vertices asG,
by induction it follows that for eachj 2 f1; 2g, there is a nice sequence of scanlines
sj�1; sj1; : : : ; sjqj ; sj in D(Rj) such that

(a) �(Hj) = fS(sj1); : : : ; S(sjqj )g,

(b) Hj = Rjsj�1;sj1;:::;sjqj ;sj
and

(c) C(sj�1; sj1); C(sj1; sj2); : : : ; C(sjqj ; sj) is a CCA ofHj.

Hences0; s11; : : : ; s1q1 ; s; s21; : : : ; s2q2 ; s
00 is a nice sequence of scanlines inD(G)

since the sequencesj�1; sj1; : : : ; sjqj ; sj in D(Rj) is nice forj 2 f1; 2g and the con-
struction ofD(Rj) fromD(G) does not change scanlines, i.e., any scanlines ofD(Rj)
has exactly the same endpointsi on the horizontal lineDi, for all i 2 f1; 2; : : : ; dg, in
both diagramsD(Rj) andD(G).

Using induction, we can see thatC(s0; s11); C(s11; s12); : : : ; C(s1q1 ; s) is a CCA
of H1 andC(s; s21); C(s21; s22); : : : ; C(s2q2 ; s

00) is a CCA ofH2. Moreover,S is a
clique and a minimal separator of the interval graphH andS = V (H1) \ V (H2).
SinceV (H1) is the vertex set ofC(s0; s) andV (H2) is the vertex set ofC(s; s00) we
obtain that each component ofG[V n S] is either completely contained inH1 or it is
completely contained inH2. SinceH is a minimal triangulation ofG, Theorem 2.3
implies thatS is a minimal separator ofG and that the components ofG[V n S] and
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H[V n S] coincide. Thus there is no edge betweenV (H1) n S andV (H2) n S in H.
Furthermore notice thatS is not a maximal clique inH and thatS is a maximal clique
in neitherH1 norH2 sinceS � C(s1q1 ; s) andS � C(s; s21).

Consequently, any maximal clique ofH is a subset ofV (H1) or it is a subset of
V (H2) and thus each maximal clique ofH is a maximal clique either inH1 or in
H2 but not in both. Furthermore each maximal clique inH1 or H2 is obviously a
clique ofH and it is a maximal one since there is no edge betweenV (H1) n S and
V (H2)nS inH. Taking into account thatS = S(s) is a subset of the cliquesC(s1q1 ; s)
andC(s; s21) we get thatC(s0; s11); C(s11; s12); : : : ; C(s1q1 ; s); C(s; s21); C(s21; s22);
: : : ; C(s2q2 ; s

00) is a CCA ofH. Hence (iii) is true.
Let G0 be any interval graph and letA1; A2; : : : ; Aq be any CCA ofG0. Then

Lemma 2.6 implies that for each minimal separatorS0 of G0 there is aj 2
f1; 2; : : : ; q � 1g such thatS0 = Aj \ Aj+1. By (c) we have thatC(s0; s11);
C(s11; s12); : : : ; C(s1q1 ; s) is a CCA of H1 and that C(s; s21); C(s21; s22); : : : ;
C(s2q2 ; s

00) is a CCA ofH2. MoreoverC(s0; s11); C(s11; s12); : : : ; C(s1q1 ; s); C(s; s21);
C(s21; s22); : : : ; C(s2q2 ; s

00) is a CCA ofH by (iii). Applying Lemma 2.6 to these
three consecutive clique arrangements we obtain that any minimal separator ofH is
either equal toS = C(s1q1 ; s) \ C(s; s21) or it is a minimal separator ofH1 andH2,
respectively. Similarly, Lemma 2.6 applied to these three consecutive clique arrange-
ments implies that each minimal separator ofH1 or H2 is a minimal separator ofH.
Thus�(H) = �(H1) [ �(H2) [ fSg. By (a), �(H1) = fS(s11); : : : ; S(s1q1)g
and �(H2) = fS(s21); : : : ; S(s2q2)g, thus �(H) = fS(s11); : : : ; S(s1q1)g [
fS(s21); : : : ; S(s2q2)g [ fS(s)g and (i) is true. Then, Theorem 2.3 immediately im-
plies that (ii) is true, and this completes the proof. 2

The theorem has interesting consequences for computing the treewidth and the mini-
mum fill-in of d-trapezoid graphs.

Definition 4.6 LetsL = s0; s1; s2; : : : ; sr�1; sr = sR be a nice sequence of scanlines
in a d-trapezoid diagramD(G). Then for alli 2 f1; 2; : : : ; r � 1g, first(si) is the set
of those pairsfu; vg of nonadjacent vertices ofG for whichsi is the leftmost scanline
of the nice sequence that intersects bothQu andQv.

Corollary 4.1 Let G = (V;E) be ad-trapezoid graph with ad-trapezoid diagram
D(G).

(i) There is a nice sequence of scanlinessL = s0; s1; s2; : : : ; sr�1; sr = sR in D(G)
such thatC(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a consecutive clique arrange-
ment of a minimal triangulation ofG into an interval graphH with

tw(G) = pw(G) = !(H)� 1 = max
0�i�r�1

(jC(si; si+1)j � 1) :

(ii) There is a nice sequence of scanlinessL = s00; s
0
1; s

0
2; : : : ; s

0
l�1; s

0
l = sR in D(G)

such thatH = Gs0
0
;s0
1
;:::;s0

l
is a minimum triangulation and a minimum inter-

val graph completion ofG,
Sl�1
i=1 fill (S(s0i)) is a minimum fill-in ofG, where

fill (S(s0i)), i 2 f1; 2; : : : ; l�1g, is the set of edges added toG for makingS(s0i)
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a clique. Furthermore

mic(G) = mfi(G) =
l�1X
i=1

jfirst(s0i)j:

Proof. Let H be a minimal triangulation ofG with tw(G) = !(H) � 1. By Theo-
rem 4.1 there is a nice sequence of scanlinessL = s0; s1; s2; : : : ; sr�1; sr = sR in
D(G) such thatH = Gs0;s1;s2;:::;sr andC(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a CCA
of H. Hencetw(G) = pw(G) = !(H)� 1 = max0�i�r�1 (jC(si; si+1)j � 1).

Let H be a minimum triangulation (and a minimum interval graph com-
pletion) of G. By Theorem 4.1 there is a nice sequence of scanlinessL =
s00; s

0
1; s

0
2; : : : ; s

0
l�1; s

0
l = sR in D(G) such thatH = Gs0

0
;s0
1
;:::;s0

l
and �(H) =

fS(s01); S(s
0
2); : : : ; S(s

0
l�1)g. Therefore the edges of the fill-inE(H) n E(G) are ex-

actly those edges added toG for makingS(s0i) a clique for eachi 2 f1; 2; : : : ; l � 1g.
Hence for any edgefu; vg 2 E(H) n E(G), there is a leftmost scanline in the se-
quence that intersects bothQu andQv. Consequently, we obtainmic(G) = mfi(G) =Pl�1

i=1 jfirst(s0i)j. 2

5 Small scanlines and dense sequences

The notion of a small scanline has been introduced in [10]. It is useful in a treewidth
algorithm since a minimal separatorS with jSj > k + 1 can not be made into a clique
for obtaining a minimal triangulationH with !(H) � k + 1.

Definition 5.1 Consider ad-trapezoid diagram. A scanlines is k-small if it intersects
with at mostk + 1 d-trapezoids.

Lemma 5.1 Anyd-trapezoid diagram hasO(nkd�1) k-small scanlines. Ifsi andsj,
i; j 2 f1; 2; : : : dg, are endpoints of ak-small scanlines thenjsi � sjj � 2(k + 1).

Proof. Consider two parallel horizontal linesDi andDj, i; j 2 f1; 2; : : : dg, of the
diagram. Lets be a scanline with endpointssi andsj onDi andDj , respectively.

Similar to the argumentation in the corresponding proof for permutation graphs
in [10] the number ofd-trapezoids having empty intersection with the scanlines is at
most

min(si; sj)� 1=2

2
+

2n�max(si; sj) + 1=2

2
= n�

jsi � sjj

2
:

Hence the number ofd-trapezoids intersecting the scanlines is at least1=2 jsi � sjj.
Thus for anyk-small scanline holds1=2 jsi � sjj � k+ 1 for eachi; j 2 f1; 2; : : : dg.
Hence there areO(nkd�1) k-small scanlines. 2

Definition 5.2 Scanlines is a predecessorof scanlinet in a d-trapezoid diagram if
s is left of t and both have common endpoints on all horizontal lines except one. On
this horizontal line (sayDj) there is exactly one point of ad-trapezoid between the
endpoints ofs andt (i.e. tj = sj + 1).
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Definition 5.3 A nice sequence of scanlinessL = s0; s1; s2; : : : ; sr�1; sr = sR in a
d-trapezoid diagram is said to be adense sequenceof scanlines ifsi is a predecessor
of si+1 for eachi 2 f0; 1; : : : ; r � 1g.

Lemma 5.2 LetG = (V;E) be ad-trapezoid graph with ad-trapezoid diagramD(G)
and letsL = s0; s1; s2; : : : ; sr�1; sr = sR be a nice sequence of scanlines. Then

tw(G) = pw(G) � max
i=0;1;:::;r�1

jC(si; si+1)j � 1

and

mfi(G) = mic(G) �
r�1X
i=1

jfirst(si)j:

Moreover, ifsL = s0; s1; s2; : : : ; sr�1; sr = sR is a dense sequence of scanlines
thenH = Gs0;s1;:::;sr is a triangulation ofG into an interval graph andC(si; si+1) is
a clique ofH for eachi 2 f0; 1; : : : ; r � 1g.

Proof. First note that Theorem 2.2 impliestw(G) = pw(G) andmfi(G) = mic(G) for
all d-trapezoid graphs. LetsL = s0; s1; s2; : : : ; sr�1; sr = sR be a nice sequence of
scanlines in ad-trapezoid diagramD(G) of a graphG.

The following convexity property is important. LetQv be ad-trapezoid inD(G)
such thatsi andsk both intersectQv. Theni < j < k implies thatsj also intersects
Qv. Thusv 2 C(si; si+1) andv 2 C(sk; sk+1) implies v 2 C(sj ; sj+1) for all j 2
fi + 1; i + 2; : : : ; k � 1g by Definition 4.2 and the convexity property. Therefore
each vertexv 2 V appears in the subsetsC(si; si+1); C(si+1; si+2); : : : ; C(sk�1; sk)
for somei; k with 0 � i � k � r. ThusC(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a
path-decomposition ofG. Consequently

tw(G) = pw(G) � max
i=0;1;:::;r�1

jC(si; si+1)j � 1:

LetH be the graph obtained fromG by adding an edge between two nonadjacent
verticesu andv of G, if there is a candidate componentC(si; si+1), for somei 2
f0; 1; : : : ; r � 1g, containingu andv. ThereforeV (G) = V (H), E(G) � E(H) and
C(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) are cliques ofH.

ThenH is an interval graph by Lemma 2.3 and thereforeH is a triangulation of
G. Since

Pr�1
i=1 jfirst(si)j is exactly the number of edges added toG to obtainH, we

obtain

mfi(G) = mic(G) �
r�1X
i=1

jfirst(si)j:

Let sL = s0; s1; s2; : : : ; sr�1; sr = sR be a nice sequence of scanlines that is
also dense. Leti 2 f0; 1; : : : ; r � 1g. Then for eachu; v 2 C(si; si+1) with u
andv nonadjacent inG, thed-trapezoidsQu andQv either both intersectsi or both
intersectsi+1, thusu andv are adjacent inH. ConsequentlyC(si; si+1) is a clique of
H = Gs0;s1;:::;sr for eachi 2 f0; 1; : : : ; r � 1g.

Recall thatC(s0; s1); C(s1; s2); : : : ; C(sr�1; sr) is a path-decomposition ofG.
ThusH = Gs0;s1;:::;sr is a triangulation ofG into an interval graph by Lemma 2.3.

2

Using Corollary 4.1 we obtain the following lemma.
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Lemma 5.3 Let G = (V;E) be a d-trapezoid graph with ad-trapezoid diagram
D(G).

(i) If tw(G) � k then there is a dense sequence ofk-small scanlinessL =
s0; s1; s2; : : : ; sr�1; sr = sR in D(G) satisfyingjC(si; si+1)j � k + 1 for all
i 2 f0; 1; : : : ; r � 1g.

(ii) There is a dense sequence of scanlinessL = s00; s
0
1; s

0
2; : : : ; s

0
l�1; s

0
l = sR in D(G)

such that mfi(G) =
Pl�1

i=1 jfirst(s0i)j.

Proof. Consider (i). By Corollary 4.1 there is a nice sequence of scanlinessL =
s0; s1; s2; : : : ; sr�1; sr = sR in D(G) such thatC(s0; s1); C(s1; s2); : : : ; C(sr�1; sr)
is a consecutive clique arrangement of a minimal triangulation ofG into an interval
graphH with tw(G) = pw(G) = !(H)� 1 = max0�i�r�1 (jC(si; si+1)j � 1). Thus
each scanlinesi is k-small, fori 2 f1; 2; : : : ; r�1g, sinceS(si) � C(si; si+1) implies
jS(si)j � jC(si; si+1)j � tw(G)+1 � k+1. (Trivially sL andsR arek-small for each
positive integerk.) ThereforesL = s0; s1; s2; : : : ; sr�1; sr = sR is a nice sequence of
k-small scanlines.

All the setsC(si; si+1), i 2 f0; 1; : : : ; r � 1g, are cliques inH = Gs0;s1;s2;:::;sr

by Theorem 4.1. Hence for any scanlines� betweensi andsi+1 and any pair ofd-
trapezoidsQu andQv that both intersects�, the verticesu andv belong toC(si; si+1),
thus they are adjacent inH.

Consequently our particular nice sequence of scanlines can be transformed
into a dense sequence of scanlines by adding a suitable sequence of scanlines
s�i1; s

�
i2; : : : ; s

�
i;qi

betweensi andsi+1 for all i 2 f0; 1; : : : ; r � 1g. ThenjS(s�)j �
jC(si; si+1)j � k + 1. Hence each scanlines� added betweensi and si+1 is k-
small. Thus we obtain a new sequencesL = ŝ0; ŝ1; ŝ2; : : : ; ŝq�1; ŝq = sR which
is a dense sequence ofk-small scanlines. Furthermore for everyj 2 f0; 1; : : : ; q� 1g,
C(ŝj ; ŝj+1) � C(si; si+1) for somei 2 f0; 1; : : : ; r � 1g by the construction of the
new sequence, implyingjC(ŝj ; ŝj+1)j � k + 1.

Consider (ii). By Corollary 4.1 there is a nice sequence of scanlinessL =
s00; s

0
1; s

0
2; : : : ; s

0
l�1; s

0
l = sR in D(G) such thatH = Gs0

0
;s0
1
;:::;s0

l
is a minimum tri-

angulation andmic(G) = mfi(G) =
Pl�1

i=1 jfirst(s0i)j. Analogously to (i) this sequence
can be transformed into a dense sequencesL = ŝ00; ŝ

0
1; ŝ

0
2; : : : ; ŝ

0
p�1; ŝ

0
p = sR satisfy-

ing mic(G) = mfi(G) =
Pp�1

i=1 jfirst(ŝ0i)j. 2

Lemmas 5.2 and 5.3 justify the correctness of our algorithms that will be described in
the next section.

6 Algorithms

We present in this section our two polynomial time algorithms computing the treewidth
and the pathwidth as well as the minimum fill-in and the minimum interval graph
completion of ad-trapezoid graph that is given with ad-trapezoid diagram,d a fixed
positive integer. Notice that for any input to one of the algorithms the constantd is
equal to the number of horizontal lines in the given diagram.
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6.1 Treewidth and pathwidth

We start with the algorithm computing the treewidth and pathwidth. Letk be a positive
integer. First we present a procedure that checks whether the treewidth of the given
d-trapezoid graph does not exceedk.

Construct a directed acyclic graphWk(G) as follows. The vertices of the graph
are thek-small scanlines ofD(G). There is an arc from scanlines to t in Wk(G) if
and only if

� the scanlines is a predecessor of the scanlinet in D(G) and

� the candidate componentC(s; t) has at mostk + 1 vertices.

The next lemma follows immediately from Lemma 5.2 and 5.3(i).

Lemma 6.1 G has treewidth at mostk if and only if there is a directed path fromsL
to sR in Wk(G).

Lemma 6.2 The graphWk(G) hasO(nkd�1) vertices andO(nkd�1) edges.

Proof. The bound on the number of vertices is shown in Lemma 5.1. For each scanline
s there are at mostd scanlinest for which s is a predecessor. Hence the outdegree of
a vertex is at mostd. 2

Now we describe the procedure which determines if the treewidth of ad-trapezoid
graphG given with ad-trapezoid diagramD(G) is at mostk.

Step 1 Construct the acyclic digraphWk(G) as follows. Compute allk-small scan-
lines inD(G) and compute all ordered pairs ofk-small scanliness and t for
which s is a predecessor oft andjC(s; t)j � k + 1.

Step 2 If there exists a path inWk(G) from sL to sR, then report that the treewidth of
G is at mostk. If such a path does not exist, then report that the treewidth ofG
is larger thank.

Lemma 6.3 The running time of the procedure isO(nkd�1).

Proof. We describe any scanlines by the vector(s1; s2; : : : ; sd) of its endpoints on the
horizontal lines of the diagram. The procedure processes in step 1 only those scanlines
s = (s1; s2; : : : ; sd) satisfyings1�2k�2 � si � s1+2k+2 for all i 2 f2; 3; : : : ; dg
(with obvious boundary conditions), since allk-small scanlines fulfil this condition by
Lemma 5.1.

We denote byA(s1; s2; : : : ; sd) the number ofd-trapezoids that intersect the scan-
line s = (s1; s2; : : : ; sd) and we denote byBi(s1; s2; : : : ; sd), i 2 f1; 2; : : : ; dg, the
number ofd-trapezoids intersecting the scanlines = (s1; s2; : : : ; sd) or the scan-
line t = (s1; s2; : : : ; si�1; si + 1; si+1; : : : ; sd). Thus s = (s1; s2; : : : ; sd) is k-
small if and only ifA(s1; s2; : : : ; sd) � k + 1 and jC(s; t)j � k + 1 if and only if
Bi(s1; s2; : : : ; sd) � k + 1. Notice thatA(0:5; 0:5; : : : ; 0:5) = 0. All other values of
A(s1; s2; : : : ; sd) andBi(s1; s2; : : : ; sd) are computed using the following rules. For
all i 2 f1; 2; : : : ; dg holds
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(i) Bi(s1; s2; : : : ; sd) = A(s1; s2; : : : ; sd) if the uniqued-trapezoid with a point be-
tween the scanliness = (s1; s2; : : : ; sd) and t = (s1; s2; : : : ; si�1; si + 1;
si+1; : : : ; sd) on the horizontal lineDi intersects the scanlines, otherwise
Bi(s1; s2; : : : ; sd) = A(s1; s2; : : : ; sd) + 1.

(ii) A(s1; s2; : : : ; si�1; si + 1; si+1; : : : sd) = Bi(s1; s2; : : : ; sd) if the uniqued-
trapezoid with a point between the scanliness = (s1; s2; : : : ; sd) and t =
(s1; s2; : : : ; si�1; si+1; si+1; : : : ; sd) on the horizontal lineDi intersectst, oth-
erwiseA(s1; s2; : : : ; sd) = Bi(s1; s2; : : : ; sd)� 1.

During step 1 the procedure computesO(nkd�1) values ofA(s1; s2; : : : ; sd) and
O(nkd�1) values ofBi(s1; s2; : : : ; sd). Clearly it can be checked in constant time
whether the uniqued-trapezoid with a point between the scanliness = (s1; s2; : : : ; sd)
and t = (s1; s2; : : : ; si�1; si + 1; si+1; : : : ; sd) on the horizontal lineDi, i 2
f1; 2; : : : ; dg, intersectss andt, respectively. Hence step 1 takes timeO(nkd�1).

Computing whether there is a directed path fromsL to sR in Wk(G) takes
O(nkd�1) time by a standard single source shortest-path algorithm in a directed
acyclic graph. Hence the total procedure can be implemented to run inO(nkd�1)
time. 2

Finally we show that the procedure can be used for obtaining an algorithm that com-
putes the treewidth.

Theorem 6.1 For each positive integerd, there is anO(n tw(G)d�1) algorithm com-
puting the treewidth and the pathwidth of ad-trapezoid graphG for which a d-
trapezoid diagramD(G) is part of the input.

Proof. The algorithm first computes a numberL such thatL=2 � tw(G) � L. This
can be done, using the procedure described aboveO(log tw(G)) times, in overall time
O(n tw(G)d�1), by calling the procedure fork = 1; 2; 4; : : : until it reports t̀w(G) �
k' for the first time. Take this value ofk asL and construct the directed graphWL(G).
Then modifyWL(G) as follows. Put weights on the arcs, saying how many vertices are
in the corresponding candidate component. Then search for a path fromsL to sR, such
that the maximum over the weights of arcs in the path is minimized. This maximum
weight minus one gives the exact treewidthtw(G). A corresponding shortest-path
algorithm for directed acyclic graphs has running timeO(n tw(G)d�1). 2

6.2 Minimum fill-in and interval graph completion

Now we show how to compute the minimum fill-in and the minimum interval graph
completion of ad-trapezoid graphG with d-trapezoid diagramD(G). The algorithm
we present directly computesmfi(G) by solving a single source shortest-path problem
on a suitable directed acyclic graph.

Construct a directed acyclic graphfW (G) as follows. The vertices of the graph are
the scanlines ofD(G). There is an arc from scanlines to t in fW (G) if and only if the
scanlines is a predecessor oft. The length of an arc froms to t is the number of pairs
of d-trapezoidsQu andQv in the diagram that have empty intersection, do not both
intersects but both intersectt.
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Lemma 6.4 mfi(G) is equal to the length of a shortest directed path fromsL to sR infW (G).

Proof. By Lemma 5.2,mfi(G) �
Pr�1

i=1 jfirst(si)j for each nice sequence of scanlines
sL = s0; s1; s2; : : : ; sr�1; sr = sR in D(G). Furthermore by Lemma 5.3(ii), there
is a dense sequence of scanlinessL = s00; s

0
1; s

0
2; : : : ; s

0
l�1; s

0
l = sR in D(G) such

that mfi(G) =
Pl�1

i=1 jfirst(s0i)j. The shortest paths fromsL to sR are in one-to-one
correspondence to the dense sequences of scanlines inD(G). Finally the length of
an arc froms to t is defined such that it is equal tojfirst(t)j if the dense sequence is
sL = s00; : : : ; s; t; : : : ; s

0
l = sR. This completes the proof. 2

Similar to Lemma 6.2 one obtains the following.

Lemma 6.5 The graphfW (G) hasO(nd) vertices andO(nd) edges.

Hence the algorithm that computes the minimum fill-in of ad-trapezoid graphG given
with ad-trapezoid diagramD(G) is as follows.

Step 1 Construct the acyclic digraphfW (G). Compute the length of all arcs infW (G).

Step 2 Compute the length of a shortest path fromsL to sR in fW (G).

Theorem 6.2 For each positive integerd, there is anO(nd) algorithm computing the
minimum fill-in and the minimum interval graph completion of a givend-trapezoid
graphG where ad-trapezoid diagramD(G) is part of the input.

Proof. Again we describe any scanlines by the vector(s1; s2; : : : ; sd) of its end-
points on the horizontal lines of the diagram. For any scanlines = (s1; s2; : : : ; sd)
we denote byL(s1; s2; : : : ; sd) the number ofd-trapezoids that are left of the scan-
line s. In a preprocessing the algorithm computesL(s1; s2; : : : ; sd) for all scanlines
s = (s1; s2; : : : ; sd) in the diagram.

This can be done quite similar to step 1 of the procedure in the previous sub-
section. ClearlyL(0:5; 0:5; : : : ; 0:5) = 0. All other values ofL(s1; s2; : : : ; sd) can
be computed by the following rule. For alli 2 f1; 2; : : : ; dg, L(s1; s2; : : : ; si�1; si +
1; si+1; : : : ; sd) = L(s1; s2; : : : ; sd)+1 if the uniqued-trapezoid with a point between
the scanliness = (s1; s2; : : : ; sd) andt = (s1; s2; : : : ; si�1; si + 1; si+1; : : : ; sd) on
the horizontal lineDi is left of t, otherwiseL(s1; s2; : : : ; si�1; si+1; si+1; : : : ; sd) =
L(s1; s2; : : : ; sd). This preprocessing can be done in timeO(nd) since there areO(nd)
scanlines by Corollary 3.1.

Then the algorithm computes the length of all arcs offW (G). Consider an arc
from s to t. First the uniqued-trapezoidQv with a point between the scanliness =
(s1; s2; : : : ; sd) andt = (s1; s2; : : : ; si�1; si + 1; si+1; : : : ; sd) is determined. IfQv

intersectss then the length of the arc is0. Otherwise the length is equal to the number
of d-trapezoids that intersects but notQv. Hence the length of the arc is exactly
L(l1v � 0:5; l2v � 0:5; : : : ; ldv � 0:5) � L(s1; s2; : : : ; sd). Consequently the directed
acyclic graphfW (G) can be constructed in timeO(nd).

Computing a shortest path fromsL to sR in fW (G) can be done in timeO(nd) by
a standard single source shortest-path algorithm in a directed acyclic graph. Hence the
overall running time of the algorithm isO(nd). 2
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7 Conclusions

In this paper we described two algorithms designed by a `scanline approach' that has
been introduced in [10]. Both polynomial time algorithms solve NP-complete prob-
lems when these problems are restricted tod-trapezoid graphs, if ad-trapezoid diagram
of the given graph is part of the input (d a fixed positive integer). AnO(n tw(G)d�1)
algorithm computes the treewidth and the pathwidth. AnO(nd) algorithm computes
the minimum fill-in and the minimum interval completion of the input graph. Both
algorithms have running times that are significantly better than the best known up to
know, i.e.,O(max(n2:376 d; n2d+2)) [31] (giving running timeO(n6) for trapezoid
graphs). Indeed we show that there are algorithms for both problems for which the or-
der of magnitude of the running time is equal to the order of magnitude of the number
of (k-small) scanlines in ad-trapezoid diagram of the input graph. Hence improving
our algorithms seems to require completely new ideas.

Our algorithms are simple and efficient for smalld, in particular ford = 2. The
2-trapezoid graphs are exactly the trapezoid graphs and there is anO(n2) algorithm
computing a trapezoid diagram for a given trapezoid graph [28]. Hence we obtain
O(n2) algorithms, even if no trapezoid diagram is part of the input. Furthermore we
obtain anO(n2) algorithm for computing the minimum fill-in of permutation graphs,
as announced in [22], since permutation graphs are a subclass of the trapezoid graphs.
(Notice that the known minimum fill-in algorithm for bipartite permutation graphs
of [34] has running timeO(n5).) Clearly our algorithms also apply to cocomparability
graphs of dimension at mostd if they are given with a suitable intersection model (see
[25]) since they are a subclass of thed-trapezoid graphs.

Our algorithms ford-trapezoid graphs require an intersection model as part of
the input. This is not surprising. On one hand, all four problems that we consid-
ered are NP-complete on cocomparability graphs [2, 38], hence there is no polyno-
mial time algorithm ford-trapezoid graphs if the parameterd is unbounded, unless
P=NP. On the other hand, the recognition problem ford-trapezoid graphs,d � 3, is
NP-complete [37]. Nevertheless it has been shown that using a different approach
anO(n3d+3) time algorithm computing the treewidth and pathwidth ford-trapezoid
graphs,d � 3, can be designed that does not require an intersection model as part of
the input [21, 25].
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