164 research outputs found

    SDN Architecture and Southbound APIs for IPv6 Segment Routing Enabled Wide Area Networks

    Full text link
    The SRv6 architecture (Segment Routing based on IPv6 data plane) is a promising solution to support services like Traffic Engineering, Service Function Chaining and Virtual Private Networks in IPv6 backbones and datacenters. The SRv6 architecture has interesting scalability properties as it reduces the amount of state information that needs to be configured in the nodes to support the network services. In this paper, we describe the advantages of complementing the SRv6 technology with an SDN based approach in backbone networks. We discuss the architecture of a SRv6 enabled network based on Linux nodes. In addition, we present the design and implementation of the Southbound API between the SDN controller and the SRv6 device. We have defined a data-model and four different implementations of the API, respectively based on gRPC, REST, NETCONF and remote Command Line Interface (CLI). Since it is important to support both the development and testing aspects we have realized an Intent based emulation system to build realistic and reproducible experiments. This collection of tools automate most of the configuration aspects relieving the experimenter from a significant effort. Finally, we have realized an evaluation of some performance aspects of our architecture and of the different variants of the Southbound APIs and we have analyzed the effects of the configuration updates in the SRv6 enabled nodes

    ENERO: Efficient Real-Time WAN Routing Optimization with Deep Reinforcement Learning

    Get PDF
    Wide Area Networks (WAN) are a key infrastructure in today's society. During the last years, WANs have seen a considerable increase in network's traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP) are under pressure to ensure the customer's Quality of Service and fulfill Service Level Agreements. Network operators leverage Traffic Engineering (TE) techniques to efficiently manage network's resources. However, WAN's traffic can drastically change during time and the connectivity can be affected due to external factors (e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time. In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the second stage, Enero uses a Local Search algorithm to improve DRL's solution without adding computational overhead to the optimization process. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 seconds on average for topologies up to 100 edges.Comment: 12 pages, 9 figure

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Implementation of Blockchain-Assisted Source Routing for Traffic Management in Software-Defined Networks

    Get PDF
    The control and infrastructure layers are split into Software-Defined Networks (SDNs). With the control and infrastructure planes split, new network applications may be developed with more simplicity and greater independence. On the other hand, the disadvantages of SDN create a slew of questions. In large-scale networks, such as Wide Area Networks (WANs) covering huge areas, more propagation delays substantially contribute to network convergence time. In addition, traditional SDN restricts network design flexibility due to the influence of controller location on network performance in large-scale networks. SDN-based source routing (SR) has emerged as a viable solution to the issues above, where the packet header field is used to specify a packet's route. This study presents an SR-based End-to-End (E2E) traffic management framework called SoRBlock. In SoRBlock, inter-domain routing uses blockchain technology, while intra-domain routing relies on the SR technique in SDNs. The simulation results show that the proposed SR-based SoRBlock framework outperforms the traditional hierarchical routing approach, HRA, in SDN networks by lowering path setup time (PST) and the number of controller messages. While the same (i.e., identical origin and target) service requests were used for all runs in the simulations, the proposed SoRBlock architecture presents almost three times less total PST between 45ms and 65ms than the HRA method between 130ms and 200ms due to the HRA approach's increased node-controller and controller-controller latencies. On the other hand, SoRBlock shows two times less PST ([75ms – 90ms]) than HRA ([150ms – 175ms]) when different service requests (i.e., different origin and target) were used. Concerning Controller Messages Processed (CMP), the HRA deals nearly 50% more controller messages between 7 and 15 than the SoRBlock between 3 and 10 when the number of domains varies, while the CMP in the SoRBlock scheme ([10 - 17]) approaches that in the HRA framework ([15 - 20]) regarding the ratio while the count of nodes rises in domains

    Hybrid IP/SDN routing for inter-data center communications

    Get PDF
    Internet Service Providers (ISPs) and dedicated inter-Data Center Wide Area Networks have been exploring Software-Defined Networking (SDN) features to achieve a high utilization of the available resources. This work proposes a scalable hybrid IP/SDN routing model, and optimization procedures fostered by Evolutionary Computation algorithms, to achieve near optimal network resources utilization under changing traffic requirements.This work has been supported by national funds through FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019.info:eu-repo/semantics/publishedVersio

    Hybrid IP/SDN networking: open implementation and experiment management tools

    Full text link
    The introduction of SDN in large-scale IP provider networks is still an open issue and different solutions have been suggested so far. In this paper we propose a hybrid approach that allows the coexistence of traditional IP routing with SDN based forwarding within the same provider domain. The solution is called OSHI - Open Source Hybrid IP/SDN networking as we have fully implemented it combining and extending Open Source software. We discuss the OSHI system architecture and the design and implementation of advanced services like Pseudo Wires and Virtual Switches. In addition, we describe a set of Open Source management tools for the emulation of the proposed solution using either the Mininet emulator or distributed physical testbeds. We refer to this suite of tools as Mantoo (Management tools). Mantoo includes an extensible web-based graphical topology designer, which provides different layered network "views" (e.g. from physical links to service relationships among nodes). The suite can validate an input topology, automatically deploy it over a Mininet emulator or a distributed SDN testbed and allows access to emulated nodes by opening consoles in the web GUI. Mantoo provides also tools to evaluate the performance of the deployed nodes.Comment: Accepted for publication in IEEE Transaction of Network and Service Management - December 2015 http://dx.doi.org/10.1109/TNSM.2015.250762
    • …
    corecore