
Computer Networks 214 (2022) 109166

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

ENERO: Efficient real-time WAN routing optimization with Deep
Reinforcement Learning
Paul Almasan a,∗, Shihan Xiao b, Xiangle Cheng b, Xiang Shi b, Pere Barlet-Ros a,
Albert Cabellos-Aparicio a

a Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain
b Network Technology Lab., Huawei Technologies Co., Ltd, China

A R T I C L E I N F O

Keywords:
Routing
Optimization
Deep Reinforcement Learning
Graph Neural Networks

A B S T R A C T

Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen
a considerable increase in network’s traffic and network applications, imposing new requirements on existing
network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP)
are under pressure to ensure the customer’s Quality of Service and fulfill Service Level Agreements. Network
operators leverage Traffic Engineering (TE) techniques to efficiently manage the network’s resources. However,
WAN’s traffic can drastically change during time and the connectivity can be affected due to external factors
(e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time.

In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization
process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing
configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network
scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the
second stage, Enero uses a Local Search algorithm to improve DRL’s solution without adding computational
overhead to the optimization process. The experimental results indicate that Enero is able to operate in
real-world dynamic network topologies in 4.5 s on average for topologies up to 100 links.
1. Introduction

In the last years, Wide Area Networks (WAN) have seen a con-
siderable growth in network traffic and applications (e.g., live video
streaming, Internet of Things), imposing new requirements on existing
network technologies [1–3]. Some examples of such requirements are
to support sudden changes in the network traffic, to enable the deploy-
ment of applications with different requirements (e.g., low latency and
high throughput) or to adapt to network topology changes (e.g., link
failures, spikes of traffic). This puts pressure on the Internet Service
Providers (ISP) to ensure the customer’s Quality of Service and fulfill
the Service Level Agreements. Therefore, ISPs are challenged to effi-
ciently and effectively manage their WAN infrastructure to guarantee
previously agreed losses, delay and throughput thresholds for different
time-sensitive applications.

In order to efficiently manage WAN infrastructures operators take
advantage of Traffic Engineering (TE) techniques [4]. TE aims to ef-
ficiently manage the network resources by steering traffic to achieve
a certain goal, for instance minimizing the utilization of the most

∗ Corresponding author.
E-mail address: felician.paul.almasan@upc.edu (P. Almasan).

1 EfficieNt rEal-time Routing Optimization.

congested link. In our work, the TE problem is defined by the network
infrastructure, the traffic matrix, the routing and the link capacity
(Section 2.1). TE is a well-established topic with a large set of pro-
posals. Initial attempts aimed at optimizing the link weights using
distributed mechanisms using either heuristics or classical optimization
techniques [5–7].

WANs have recently been softwarized, this is referred to as SD-
WAN [8]. SD-WANs offer programmability and the SDN controller
has a full view over the network resources, enabling a new breed of
centralized TE algorithms. A notable example is DEFO [9], which uses a
centralized constraint programming algorithm to produce TE solutions
in a few minutes. The centralization and softwarization of the network
has allowed to achieve unprecedented TE performance [10].

In this paper, we explore the feasibility of designing a Deep Rein-
forcement Learning (DRL) based method for solving TE problems. We
propose Enero,1 a real-time high performance optimization engine for
solving TE problems (Section 3). In addition to DRL, we use a Local
vailable online 9 July 2022
389-1286/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.comnet.2022.109166
Received 27 September 2021; Received in revised form 19 May 2022; Accepted 5 J
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

uly 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:felician.paul.almasan@upc.edu
https://doi.org/10.1016/j.comnet.2022.109166
https://doi.org/10.1016/j.comnet.2022.109166
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109166&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Networks 214 (2022) 109166P. Almasan et al.
Search (LS) algorithm to improve DRL’s solution (Section 3.1). Intu-
itively, LS explores the solution space by applying small changes to the
DRL’s solution. In contrast to other existing solutions, our method does
not require the network operators to design hand-crafted heuristics nor
to use expert knowledge.

Several works analyzed WAN’s traffic behavior to study and model
its behavior [11–13]. These studies found that the significant changes
in traffic patterns happen frequently, on the scale of several minutes.
Thus, to be able to solve a TE problem before the traffic changes
significantly, we considered real-time to be in a sub-minute time scale.

One of the problems of using DRL in real-world scenarios is that
it does not offer performance bounds. This means that once a DRL
agent is trained, there is no way to give a minimum certainty over the
DRL agent’s performance. This performance bound would let network
operators know when the DRL agent’s performance is poor before
deployment and avoid compromising the real network’s behavior. Con-
sequently, network operators typically do not feel confident to deploy
such technology in a real-world network. In our work, we designed a
method to offer a minimum performance certainty or bound in the DRL
agent’s performance(Section 3.2).

Another important characteristic of our solution is that it is able
to adapt to changes. WAN scenarios suffer from changes constantly,
physical links can be broken due to external factors and network users
have different pattern behaviors that cause difficult-to-predict spikes
in network’s resources utilization. When such an event occurs, state-
of-the-art TE solutions based on heuristics or classical optimization
techniques need to start the optimization process from scratch.

In our work, Enero is designed with a DRL agent that incorporates
a Graph Neural Network (GNN) [14]. GNNs are a novel family of Deep
Learning techniques tailored for learning relational information. By
using a GNN in the DRL agent, we enable Enero to operate efficiently
over different network scenarios when the traffic matrix or the network
topology changes during time.

In summary, our work makes the following contributions:

• We propose Enero, a two-staged method that leverages DRL and
a Local Search (LS) algorithm to reach high quality TE solutions
in real-time operation (Section 3.1).

• We propose a method to offer a performance certainty or lower
bound in the DRL agent’s operation (Section 3.2).

• We design a DRL agent that is able to operate efficiently while
link failures occur and is able to adapt to dynamic traffic matrices
(Section 3.3).

2. Background

2.1. Problem statement

The problem we want to solve corresponds to the classic TE problem
of minimizing the maximum link utilization [5,7,9,15]. This is because
we are interested in avoiding sending packets over congested links.
A congested link is where the amount of traffic crossing the link is
larger than the link capacity. When this happens, the excess packets
are dropped, causing packet losses. Thus, we want to minimize the most
congested link and to efficiently use the network’s resources.

The TE problem is defined by a directed graph, a traffic matrix
(TM) and an initial routing configuration. We abstract the real-world
network topology as a directed graph, where the physical routers are
represented by nodes with no features associated. Between two nodes
there are always two links which correspond to the upstream and
downstream links. In reality there can be multiple links between two
nodes. However, we abstract from such technicality and we aggregate
all the capacities into a single link for each direction. The traffic matrix
indicates the volume of traffic that is being sent through the network.
Specifically, the TM has size NxN where N is the number of nodes. Each
pair of nodes (s, d) with s∈N and d∈N corresponds to a traffic demand
2

Fig. 1. Problem statement overview. The routing configuration is applied to the traffic
matrix and is combined with the network topology, resulting in a network state with
link utilization values. Our goal is to minimize the utilization of the most loaded link.

Fig. 2. Single step optimization process that illustrates how changing the routing of
the traffic demand (A, E) minimizes the maximum link utilization. Specifically, traffic
demand (A, E) is assigned with the intermediate SR node C to program a detour and
avoid link B–E.

which is an aggregate of flows. In our optimization scenario, we do not
take into account the traffic demands with s==d (i.e., the nodes do not
send traffic to themselves). Fig. 1 illustrates how the routing and the
TM are combined to obtain a network state with the link utilization
values.

Initially, each traffic demand is allocated using the OSPF protocol
with unitary link weights. These weights are initially assigned by
the network operator using different methods (e.g., unitary weight or
inverse of the link capacity). Then, the goal is to change the routing
policy such that the maximum link utilization is minimized. Ideally,
the final solution should decrease the link utilization in a way that the
amount of traffic volume crossing the most loaded link is below the
link’s capacity.

We leverage Segment Routing (SR) [16] to enable fast and efficient
centralized network management. SR is a protocol that includes routing
related-information in the IP packet headers. This means that each
packet will have an SR path to reach a destination node. Then, SR
Ingress routers encapsulate incoming packets to create a tunnel that
traverses an SR path before reaching their respective destination. This
SR path is composed of different segments, and in each of them, the
endpoint node removes the outermost encapsulation label. This process
is repeated until the packet reaches the SR Egress node. The packets
within a segment are routed using the traditional OSPF routing proto-
col. In TE terms, SR can program detours in forwarding paths so that
network packets avoid crossing congested links. Previous work showed
that SR using 2-segment paths offers enough flexibility to achieve high
network performance [15]. In our work, we adapt a similar approach
and we consider only one intermediate node between SR Ingress and
Egress nodes.

Fig. 2 shows an illustrative example of the TE problem we want
to solve. In the figure, the overlay routing for a single traffic demand
is changed. Specifically, the traffic demand that goes from node A
to node E has a bandwidth of 9 and it initially uses OSPF to reach
the destination. This corresponds to the left-hand side network state



Computer Networks 214 (2022) 109166P. Almasan et al.
from the same figure. Then, a good action to minimize the maximum
link utilization would be to re-route the traffic demand through the
intermediate node C. This means that the SR path would be A - C - E,
where C is the intermediate node. This process is repeated for all the
traffic demands (i.e., all pairs of source–destination nodes), where their
routing policies are changed such that the maximum link utilization is
minimized.

2.2. Shortcomings of existing solutions

The TE problem can be formulated as an Integer Linear Program-
ming (ILP) problem and can be solved using state-of-the-art optimizer
engines such as Gurobi [17] or CPLEX [18]. In our TE problem, the
decision variables correspond to the traffic demands and the link
capacities constrain the optimization problem and define the solution
space. There is at most one traffic demand for each pair of nodes.
When the problem size grows (i.e., the number of nodes and links
grows), the number of decision variables increases and the solution
space becomes larger and more complex. In this context, TE in WAN
results in a large combinatorial space where the number of possible
routing configurations for each traffic demand explodes. Consequently,
ILP solvers would take several weeks to find the exact solutions in
WANs as they have in the order of hundreds of links and nodes [9,19].

An alternative to ILP is the use of Constraint Programming (CP)
[20]. This method defines the combinatorial problem to solve with a
set of decision variables (e.g., traffic demands, OSPF weights), a set
of domains (i.e., potential values of the decision variables) and a set
of constraints on the feasible solutions (e.g., maximum link utilization
must be below a threshold). To define the constraints that limit the
solution space and makes it tractable is non-trivial in WANs due to
their size and complexity. In addition, the user indicates some time
limit and the solver will return the best solution found within the
specified time (e.g., DEFO [9]). Therefore, when solving a TE problem
using CP, network operators should estimate the solver’s execution time
needed to obtain a solution with the desired performance. However,
WANs experience external events frequently (e.g., link failures, increase
in traffic demand), altering the normal network behavior [11–13].
This method has the limitation of finding sub-optimal solutions if the
specified time is not long enough.

Finally, network operators can use heuristics or expert knowledge
to design an algorithm to solve TE problems. In addition, they can
leverage heuristics to reduce the problem dimensionality by pruning
the solution space, and then use a traditional method to solve the
smaller problem (e.g., CP, ILP). In the last years, WANs’ size and
traffic have been growing by almost doubling every year [1–3], raising
the complexity of efficient network operation. As a result, the design
of high performance heuristics for TE became more challenging for
humans, and with a higher cost for network operators. In addition,
human experts typically use trial-and-error processes that can take
several months, which does not scale with recent trends in WANs.

2.3. Deep reinforcement learning for traffic engineering

DRL is a technology capable of modeling future rewards. This means
that DRL can optimize the routing configuration taking into account
the future. That is to say, DRL can learn a long-term routing policy
by taking into account the future expected rewards. For example, to
change a routing policy of a traffic demand might not lead to an
immediate minimization of the maximum link utilization but to a
delayed one that the DRL agent will observe later in the future. This
is contrary to heuristics where they cannot establish a relationship be-
tween local decisions (e.g., change a routing configuration for a traffic
demand) and long-term strategies to solve an optimization problem
(e.g., minimize the most loaded link), leading heuristics to achieve sub-
optimal performance. The long-term planning capabilities make DRL a
key technology for solving the TE problem.
3

The TE problem can be seen as a combinatorial problem where
traffic demands are assigned to routing policies such that the utilization
of the most loaded link is minimized. The difficulty of combinatorial
problems can make the DRL reach sub-optimal solutions. The reason
behind this is that when the DRL agent makes a bad decision, it has
no way to undo it and explore other actions. To solve this issue, we
incorporated a low computational overhead optimization step that is
executed after the DRL’s agent optimization process.

3. Design

Enero is a two-stage method for real-time routing optimization that
combines DRL and LS. In the first stage, Enero leverages DRL to find a
good initial solution to the TE problem by taking into account future
traffic demands. Recall that we consider a traffic demand as a source–
destination node pair with a bandwidth that represents an aggregate
of flows between the node pair. In the second stage, Enero tries to
improve DRL’s solution using a LS technique. In our work, the LS step
implements the hill climbing heuristic that behaves in a greedy way by
making incremental changes to the DRL solution.

Intuitively, LS explores the solution space by applying small changes
to the initial configuration or solution. The motivation behind the
combination of DRL with LS is to leverage DRL’s long-term planning
capabilities and to improve DRL’s solution using LS. Combining DRL
with traditional optimization techniques has shown to achieve high
performance in complex scenarios [21,22]. We believe that DRL and
LS complement each other, increasing the performance of the resulting
solutions.

The number of traffic demands grows quadratically with the number
of nodes in a network. For instance, in a topology with 30 nodes
there are 30 ∗ 29 = 870 traffic demands whose routing needs to be
reconfigured to solve the TE problem. Ideally, we would like to take
into account all traffic demands in our TE optimization problem to
ensure that our solver can find the best routing configuration. However,
the solution space becomes intractable for large TE problem instances
and computationally expensive even when using heuristics. Inspired
by [22], we decided to take a subset of these traffic demands. These
are called critical demands and they are selected from the set of traffic
demands crossing the 5 most loaded links. We initially performed some
experiments where we optimized selecting different percentages of the
traffic demands (i.e., 10, 15, 20 and 50). The results showed that
taking 15% of the critical demands offered the best trade-off between
computation time and performance.

3.1. Two-stage optimization

The complexity of the combinatorial problem can make the DRL
agent achieve sub-optimal routing configurations. This is because, on
the contrary to some existing solutions that use backtracking (e.g.,
DEFO [9]), the DRL agent has only one shot to converge to the optimal
solution (i.e., a single iteration over all traffic matrices). To solve this
issue, we improve DRL’s solution using a LS technique without adding
a large computational overhead.

The LS step implements a hill climbing heuristic. This method makes
small incremental changes to the DRL’s solution, trying to find new TE
solutions that are fundamentally close to DRL’s resulting configuration.
Specifically, LS iterates over all traffic demands and all possible SR
paths, trying to find which is the best configuration that minimizes the
maximum link utilization. Similarly to the DRL case, LS iterates only
over 15% of the critical traffic demands. We decided to adapt LS in the
second stage for being an anytime optimization technique. This means
that the LS search process can be stopped at any moment and the result
returned will always be a valid one.



Computer Networks 214 (2022) 109166P. Almasan et al.
Fig. 3. DRL setup overview. The critical demands are computed in the GYM Environment at the beginning of an episode. Then, the DRL agent iterates over them and for each
demand, the agent explores the action space by marking the links for each SR path. Afterwards, a GNN takes the graphs with the actions marked and outputs a probability
distribution. The action to perform is sampled from the distribution and applied to the environment.
3.2. Performance lower bound

Even though DRL is a key technology to learn long-term strategies,
it can still make mistakes. DRL is a data-driven method and when
evaluated in out-of-distribution data (i.e., data totally different than
the one used in the learning process), it is to be expected that the
performance will degrade. In our TE problem this can happen due to
different bandwidth scales in the traffic matrices, due to different ex-
treme topologies that can radically change the action space or because
of the high complexity of exploring the solution space.

To solve this problem and to enable the deployment of the DRL
technology in real-world scenarios, we had to give some minimum
performance certainty for the DRL agent. With this lower bound, the
network operator can know for certain the DRL agent’s performance
before deploying it on the real network. To do this, the DRL agent
starts the optimization process from a predefined routing policy. In our
paper we consider OSPF as the starting routing policy. Then, it starts
the optimization process and changes the routing configuration of the
critical traffic demands. If the DRL agent is not capable of minimizing
the maximum link utilization, it returns the initial routing configura-
tion to the LS stage. Enero is designed to allow the starting routing
policy to be initialized using any routing policy (e.g., expert-knowledge,
heuristic-based routing policy).

3.3. Deep reinforcement learning agent

The DRL setup can be described by defining the environment state,
the action representation and the reward. The environment state includes
the network topology with the links’ features (i.e., link capacity and
utilization). When the DRL agent performs an action (i.e., applies a
new routing policy to a given traffic demand), the link’s utilization is
updated. The action is represented directly on the network topology by
marking the links that are part of the action. In other words, the links of
the path going from a source node to a SR intermediate node and from
this to the destination node are marked with a flag. All the nodes from
the topology can be SR intermediate nodes. This process is repeated
for each possible action of the current traffic demand whose routing
needs to be changed. The DRL’s GNN is then in charge of processing
these graphs (i.e., one graph per action where the action is marked
directly on the links) and will output a probability distribution over
the actions. Finally, the reward is the difference between the maximum
link utilization between two steps. This difference is relative to the link
capacities. Fig. 3 shows an overview of the DRL setup and the operation
process.
4

Fig. 4. Enero’s workflow.

3.4. Workflow

Enero is an optimization engine that is placed in the SDN controller.
It takes as input the network topology, the TM and the initial routing
configuration. When the SDN controller detects a change in the network
(e.g., traffic matrix changed, link failure), it executes Enero to start
the optimization process for the new scenario. This process finishes in
under a minute, enabling real-time operation.

Fig. 4 shows Enero’s step-by-step workflow. At the beginning (Step
0), the Network Operator defines the initial OSPF weights. These
weights are used to initially route the traffic demands and to route the
demands within SR segments [15]. Their values can be assigned either
by the network operator using heuristics and expert knowledge or by
using some well-established OSPF weights initialization (e.g., unitary
weight values, inverse of the link capacity).

Once the initial routing policy is defined, a monitoring platform is
in charge of retrieving the relevant information for the TE optimization
problem (Step 1). This information consists of the network topology,
the TM and the OSPF weights. Then, Enero takes this information (Step
2) and starts the optimization process. When the process finishes, the
routing configuration (i.e., per-demand SR intermediate node assign-
ment) is pushed down to the Data Plane (Step 3). This means that
each traffic demand is going to be assigned a SR intermediate node.
When there is some change in the Data Plane (e.g., the topology or the
TM changed), the monitoring platform will detect these changes and



Computer Networks 214 (2022) 109166P. Almasan et al.

t
m
a

t
t
S
p
p

p
c
a
s
t

(
r
T

Algorithm 1 DRL Agent Training Process
1: Input: Network topology (G), link capacities, TMs, Initial OSPF

Weights (OSPFw)
2: for i in 0, ..., 𝐸 do
3: 𝑒𝑛𝑣, 𝑑 ← 𝑖𝑛𝑖𝑡_𝑒𝑛𝑣(𝐺, 𝑇𝑀,𝑂𝑆𝑃𝐹𝑤)
4: while not Done do
5: 𝑎𝑐𝑡_𝑑𝑖𝑠𝑡 ← 𝑝𝑟𝑒𝑑_𝑎𝑐𝑡_𝑑𝑖𝑠𝑡𝑟𝑖𝑏(𝑒𝑛𝑣, 𝑑)
6: 𝑐_𝑣𝑎𝑙 ← 𝑝𝑟𝑒𝑑_𝑐𝑟𝑖𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒(𝑒𝑛𝑣)
7: 𝑎 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑎𝑐𝑡𝑖𝑜𝑛(𝑎𝑐𝑡_𝑑𝑖𝑠𝑡)
8: 𝑑,𝐷𝑜𝑛𝑒, 𝑟 ← 𝑠𝑡𝑒𝑝(𝑎, 𝑑, 𝑒𝑛𝑣)
9: 𝑠𝑡𝑜𝑟𝑒_𝑟𝑒𝑠𝑢𝑙𝑡𝑠(𝑎𝑐𝑡_𝑑𝑖𝑠𝑡, 𝑐_𝑣𝑎𝑙, 𝑎, 𝑑,𝐷𝑜𝑛𝑒, 𝑟)

10: 𝑐_𝑣𝑎𝑙 ← 𝑝𝑟𝑒𝑑_𝑐𝑟𝑖𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒(𝑒𝑛𝑣)
11: 𝑟𝑒𝑡, 𝑎𝑑𝑣 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐺𝐴𝐸(𝑐_𝑣𝑎𝑙′, 𝑟′)
12: 𝑎_𝑙𝑜𝑠𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑎𝑐𝑡𝑜𝑟_𝑙𝑜𝑠𝑠(𝑎𝑑𝑣)
13: 𝑐_𝑙𝑜𝑠𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑟𝑖𝑡𝑖𝑐_𝑙𝑜𝑠𝑠(𝑟𝑒𝑡)
14: 𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠 ← 𝑎_𝑙𝑜𝑠𝑠 + 𝑐_𝑙𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
15: 𝑔𝑟𝑎𝑑𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑡𝑜𝑡𝑎𝑙_𝑙𝑜𝑠𝑠)
16: 𝑐𝑙𝑖𝑝_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑔𝑟𝑎𝑑𝑠)
17: 𝑎𝑝𝑝𝑙𝑦_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑔𝑟𝑎𝑑𝑠)

will launch Enero again to optimize the new scenario. There are many
efforts put on the design of fast and efficient monitoring platforms and
we consider it to be outside the scope of this work [23–25].

3.5. Training algorithm

The DRL agent training is an iterative process that takes as input a
network topology, a set of traffic matrices, the links’ features and the
initial OSPF weights defined by the network operator. Then, the DRL
agent will learn how to optimize over the given routing configuration
and for different TMs. To do this, the DRL agent iterates over the traffic
demands following a decreasing bandwidth order, changing the routing
policy for each demand. This means that for each traffic demand, the
DRL agent will assign the best SR intermediate node before reaching
the destination node. This process can be seen as changing the direct
shortest path from the source node to the destination node by creating
a detour. This is a trial-and-error process where at the beginning the
agent will explore different routing configurations, and as the training
advances, the agent will tend to exploit more of the action space.

Algorithm 1 shows the pseudo-code of the actor–critic training pro-
cess. For the sake of simplicity, the pseudo-code describes the training
process using a single network topology. The same process can be
applied to multiple topologies by repeating the lines 3 to 9 for each
topology. The training process starts in line 2 and finishes when the
number of training episodes E has been reached. At the beginning of
he training episode, the DRL environment is initialized (line 3). This
eans that the topology is built and the links’ utilization is updated

ccording to the initial OSPF routing policy.
The loop from line 4 indicates the iteration of the DRL agent over

he critical traffic demands. In each loop iteration, the DRL agent tries
o change the routing policy of a single traffic demand (i.e., assign an
R intermediate node). In line 5 the DRL agent uses the GNN to output a
robability distribution over the action space. Then, the critic network
redicts the value of the current state.

The DRL agent uses a random sampling of the action distribution to
ick the action to perform (line 7). During evaluation, the sampling is
hanged by taking the action with higher probability. Then, the selected
ction is sent to the environment to be applied over the current network
tate and to update the link’s utilization. In line 9, the agent stores all
he intermediate results that will later be used to compute the losses.

The next step is to compute the Generalized Advantage Estimates
GAE), which is a method to reduce variance in policy gradient algo-
ithms [26]. Then, the actor and the critic losses are computed [27].
hese are then combined in a sum and subtracted with the entropy
5

Table 1
Enero hyperparameter configuration.

Hyperparameter Value

GNN hidden state 20
Message passing steps 5
Evaluation episodes per topology 20
Training epochs 8
% critical demands 15%
Mini-batch size 55
Learning rate 0.0002
Decay rate (Decay steps) 0.96 (60)
Entropy beta (After 60 episodes) 0.01 (0.001)
GAE Gamma, Lambda 0.99, 0.95
Gradient clipping value 0.5
Actor L2 regularization 0.0001
Readout units 20
Activation function Selu

term, used to guide the exploration during training [28]. Finally, the
gradients are computed and clipped to avoid the policy to change too
much for a given training step, and they are applied to the actor and
critic networks.

4. Experimental results

In this section, we first describe the implementation details and the
methodology used to obtain the datasets and to train the DRL agent.
Then, we made an experimental study to see the performance gap
between DRL, LS and Enero. Finally, we perform a series of experiments
on different real-world network scenarios. Specifically, we want to
answer the following questions:

• What is the performance gap between DRL, LS and Enero for
solving TE problems? (Section 4.3)

• How does Enero perform when the traffic matrix changes during
time? (Section 4.4)

• What is Enero’s performance when the topology changes as a
result of link failures? (Section 4.5)

• What is Enero’s performance and execution cost compared with
state-of-the-art TE solutions? (Section 4.6)

All experiments were executed on off-the-shelf hardware without
any specific hardware accelerator or high performance software opti-
mization engine. Specifically, we used a machine with Ubuntu 20.04.1
LTS with processor AMD Ryzen 9 3950X 16-Core Processor.

4.1. Implementation

Enero is implemented in Python, with the exception of the DRL
part (training and evaluation) that was implemented using Tensor-
flow [29] and the DRL environment that was implemented using the
OpenAI Gym framework [30]. The DRL agent is trained using the PPO
algorithm [27]. The LS stage is implemented totally in Python except
for some operations where it uses the Numpy library [31]. The LS
execution cost could be improved by using more efficient libraries
(e.g., Cython [32]), which were left as future work. For some graph-
related operations the NetworkX library [33] is used. Table 1 shows the
hyperparameters used during Enero’s DRL agent training stage. Enero’s
code is publicly available 2.

2 https://github.com/BNN-UPC/ENERO



Computer Networks 214 (2022) 109166P. Almasan et al.

D
a
a
T
o
t
B
s
f

4

w
i
e
o
d
t
L
i
t
O
i
t
p
a

r
w
t
i
a
T
e
t
o
t
(

d
m
u
s
p
E

4.2. Methodology

4.2.1. Traffic matrices
The traffic matrices were generated using a uniform distribution.

This means that the bandwidth values from the traffic demands were
uniformly distributed from 0.5 to 1. Then, we scaled this value to
obtain the TM’s bandwidths in Kbps and to have the same unit for both
bandwidth and link capacities. Each network topology had a total of
150 TMs.

4.2.2. Network topologies
We obtained the network topologies from the TopologyZoo dataset

[19], which contains real-world topologies from network operators.
Specifically, we took all topologies up to 100 links and 30 nodes,
resulting in a total of 74 topologies. From these topologies, only 3 of
them were used in the DRL agent’s training process. In our TE problem
we only consider the link capacities, which means that nodes do not
have any features associated.

4.2.3. DRL agent training
In all the experiments from this paper we are always evaluating

the same DRL agent. This means that we have only trained a single
RL agent and incorporated it into Enero. To train the DRL agent, we
rbitrarily picked 3 network topologies (i.e., BtAsiaPac, Garr199905
nd Goodnet topologies) from the 74 topologies extracted from the
opology Zoo dataset. We split the original 150 TMs from each topol-
gy into 100 TMs for training and 50 TMs for evaluation. During
raining, the DRL’s agent performance evolution is evaluated on the
tAsiaPac, Garr199905 and Goodnet topologies after every training
tep. Specifically, the agent is evaluated on 20 TMs uniformly sampled
rom the evaluation split for each topology.

.2.4. Comparison baselines
We compare Enero with three baselines which together represent

idely used heuristics and close-to-optimal solutions. The first baseline
s the Shortest Available Path (SAP) heuristic. SAP starts with the
mpty network and iterates over all traffic demands in decreasing order
f bandwidth. This is done to allocate the bigger and critical traffic
emands first. Then, each traffic demand is routed using the path with
he highest available bandwidth. The second baseline corresponds to a
S algorithm. Specifically, we implemented the hill climbing search to
mprove an initial routing configuration in a greedy fashion. Similarly
o Enero, this method starts in the same routing configuration using the
SPF protocol and tries to minimize the maximum link utilization. This

s an iterative process where in each step applies the routing policy of
he traffic demand that minimizes the maximum link utilization. This
rocess finishes when the maximum link utilization does not improve
nymore.

To compute the optimal solution for our TE problem it would
equire weeks of computation using ILP. As it is not feasible to do that,
e chose DEFO [9] as our close-to-optimal baseline. In particular, we

ook the implementation from [34] and adapted it to have at most one
ntermediate SR node per traffic demand. DEFO is a CP-based solution
nd if left enough time executing it provides a close-to-optimal solution.
his is the reason why we left DEFO executing for 180 s in all of our
xperiments. Following the recommendations from the experiments in
he original paper [9] on very large topologies (i.e., a few hundreds
f links and more than 6.000 traffic demands to optimize), we expect
hat 180 s is enough to find close-to-optimal solutions in our topologies
i.e., we have topologies of up to 100 nodes and 900 traffic demands).

DEFO uses Equal-cost multi-path routing (ECMP) to route the traffic
emands. This enables DEFO to divide the traffic demands among
ultiple paths, achieving a better traffic distribution and a lower link
tilization. In our problem setup the traffic demands are routed using
olely a single path, creating a natural gap between DEFO and Enero’s
erformance. We left the task of enabling Enero to optimize using
6

CMP for future work.
Fig. 5. Performance of LS, DRL and Enero for the EliBackbone, Janetbackbone and
HurricaneElectric topologies.

Fig. 6. Execution cost of LS, DRL and Enero for the EliBackbone, Janetbackbone and
HurricaneElectric topologies. Best viewed in color.

4.3. DRL and LS hybrid method

In this section we want to demonstrate the capabilities of combining
DRL with LS. To do this we studied the performance and execution
cost of DRL and LS individually and compared them with Enero. In
the experiments, we evaluated the DRL agent, the LS algorithm and
Enero on three network topologies using 50 TMs per topology. Figs. 5
and 6 show the resulting performance and the CDF of the execution
cost respectively. Notice that the topologies from these figures were
not seen by the DRL agent during the training process.

The experimental results indicate that DRL has a reasonably good
performance in all three topologies. This is because it can minimize the
maximum link utilization from ≈1.1 to below 1 for EliBackbone and
HurricaneElectric topologies and to ≈1 for the Janetbackbone topology.
LS can minimize the maximum link utilization in all three topologies,
obtaining better performance than DRL. However, the CDF from Fig. 6
indicates that the DRL is extremely fast while LS takes a considerable
amount of time (up to minutes).

To demonstrate the capabilities of combining DRL with LS we also
plot in Figs. 5 and 6 Enero’s performance and execution cost. The
results indicate that Enero reaches better TE solutions than DRL and
LS in all three topologies while the execution time is below 40 s for the

Janetbackbone topology. Notice that the Janetbackbone topology is a



Computer Networks 214 (2022) 109166P. Almasan et al.

l
b

4

t
t
b
c
p

w
m
a
a
w
F
t
E
o
a
t
t
d
d

4

c
u
e
t
l
T

Fig. 7. Enero evaluation on different real-world network topologies for the dynamic traffic matrix scenario. For each topology, we evaluated over 50 different TMs. Notice that
the topologies from this figure were not seen by the DRL agent during the training process.
Fig. 8. Link failures scenario. For each number of link failures there are 20 different topologies and we evaluated using 50 TMs for each topology.
arge topology with 812 traffic demands whose routing policy needs to
e optimized, which explains the larger execution times.

.4. Dynamic traffic matrix

In this scenario we want to evaluate Enero’s performance when
he traffic matrix changes during time. In our experiments we took
he extreme case where every 60 s the entire TM changes. The reason
ehind this is to simulate the worst-case scenario where Enero must re-
ompute the solution to the TE problem from scratch. We repeat this
rocess until the TM has changed 50 times.

Fig. 7 shows the evaluation results on three network topologies
ith 50 TMs per topology. Each line indicates the progress of the
aximum link utilization while Enero is solving the TE problem for
given TM. In reality, the lines should be concatenated one after

nother but for visualization purposes we aggregated all the events
here the TM changed into a single figure per-topology. From the same
igures we can observe Enero’s two-stage optimization process. When
he monitoring platform detects a change in the TM (see Section 3.4),
nero uses the pre-defined OSPF routing policy and then starts the
ptimization process. We can appreciate that in all topologies the DRL
gent quickly finds a good TE solution and then LS improves it. Notice
hat the topologies are different from those used during the DRL agent
raining process. This showcases Enero’s capabilities to perform TE on
ifferent network topologies (than those seen during training) and with
ynamic changes in the TM.

.5. Link failures

In this experiment we evaluated Enero’s capabilities to react to
hanges in the network topology resulting from link failures. We sim-
lated link failures by randomly removing links from the topology in
ach of the evaluation topologies. We made sure that there are no two
opologies that are the same after removing some links. For each logical
ink in the topology, there are the upstream and downstream links.
o ensure network connectivity, when we drop a link we drop both
7

upstream and downstream links. We simulated up to 8 link failures in
total where for each failure there are 20 different topologies and for
each topology there are 50 TMs.

To make the experiments more challenging, we used the original
TMs from the topologies. In other words, the bandwidths from the TMs
remained the same while link failures were happening. This means
that while the traffic demands did not change, link failures forced the
network to have less and less resources to accommodate the original
TMs.

Fig. 8 shows Enero’s results after optimization for each link failure
together with the results from DEFO and SAP baselines. Because the
TMs did not change and the topology had less resources to accommo-
date the bandwidths, the maximum link utilization should be increasing
when links from the topology fail. The results indicate that Enero’s
performance has a similar behavior to DEFO regardless of the number
of link failures. Recall that DEFO is our close-to-optimal baseline which
has been executed during 180 s and uses ECMP to split the traffic
demands among multiple paths.

4.6. Operation performance and cost

In this experiment we wanted to evaluate Enero’s performance while
operating on a set of real-world topologies. To do this, we took all
topologies from the TopologyZoo dataset that had up to 100 links
and 30 nodes. This made a total of 74 topologies, from which only 3
of them were used in the DRL agent’s training process. Fig. 9 shows
the evaluation results over all 74 topologies. Specifically, in Fig. 9(a)
we plot the relative performance with respect to the LS baseline. The
topologies from 20 to 37 are ring, star or line topologies where there
is no room for optimization. This explains why all the baselines have
exactly the same performance. Fig. 9(b) shows the execution cost of
all the baselines. As a reminder, DEFO was set to execute for 180 s
to ensure a close-to-optimal solution. The results indicate that Enero is
capable of obtaining better performance than the SAP and LS baselines
and in most of the topologies has a similar performance to DEFO. In
addition, Enero’s execution cost is small, with only 5 topologies with
an operation cost of more than 20 s.



Computer Networks 214 (2022) 109166P. Almasan et al.

t

𝑐

w
p
l

e

D

Fig. 9. Relative performance (a) and CDF of the execution cost (b) on the TopologyZoo
dataset. In sub-figure (a), the topologies from 20 to 37 are ring or star topologies where
there is no room for optimization.

5. Discussion

Enero is a data-driven solution that can use synthetic or real-world
data to train a DRL agent to solve TE problems. This means that if we
deploy our agent over topologies or TMs that are very different from
those from the dataset used in the training process, we can expect our
agent’s performance to drop. This explains Enero’s poor performance
for the top left topologies from Fig. 9(a). Specifically, the traffic demand
values are all limited by the uniform distribution between 0.5 and 1,
meaning that the TMs can be discarded as the source of performance
instability. Thus, we focused our attention on the network topologies
and we wanted to study what is different (in connectivity terms) in the
top left topologies in Fig. 9(a).

We identified two metrics that showcase the differences between the
topologies used during training and those where Enero’s performance
is worse. The first one is the node degree, which indicates the number
of adjacent links to a node. The second metric is the edge betweenness,
which computes the portion of all pairs of shortest paths that pass
through each link l of a graph [35]. The following equation describes
he edge betweenness metric:

(𝑙) =
∑

𝑠,𝑑∈𝑁

𝜎(𝑠, 𝑑|𝑙)
𝜎(𝑠, 𝑑)

(1)

here N is the set of all nodes, 𝜎(𝑠, 𝑑) is the total number of shortest
aths and 𝜎(𝑠, 𝑑|𝑙) is the number of shortest paths that pass through
ink l.

Table 2 shows the minimum, maximum and mean node degree and
dge betweenness for each topology used during training and for the 4
8

Table 2
TopologyZoo metrics. For each topology and each metric the tuple values correspond
to the (min, max, mean) values respectively. The top 3 topologies are those used during

RL’s agent training process.
Topology/Id Node degree Edge betweenness

BtAsiaPac (2, 24, 6.2) (0.010, 0.067, 0.04)
Goodnet (2, 18, 7.3) (0.014, 0.059, 0.03)
Garr199905 (2, 18, 4.35) (0.0435, 0.083, 0.05)
0 (4, 8, 4.3) (0.043, 0.167, 0.11)
1 (2, 14, 5.23) (0.026, 0.117, 0.07)
2 (2, 8, 4.2) (0.044, 0.164, 0.10)
3 (2, 6, 4.0) (0.067, 0.162, 0.12)

topologies where Enero had worse performance. These metrics indicate
that the topologies seen during training and the ones where our method
performs worse are totally different. For example, the minimum and the
average edge betweenness is much higher in the topologies 0, 1, 2 and
3. This indicates that the shortest paths are not well distributed and
they cross the same links, making them become critical links for the
TE problem. In addition, the topologies used in the training process
have a higher average and a wider range of the node degree. This
indicates that the nodes are more interconnected between them than
in the topologies 0, 1, 2 and 3.

There are several ways to solve the out-of-distribution problem.
For example, we could work with specific Deep Learning techniques
such as regularization or dropout. However, the most effective way
would be to add more data to the training process. This is translated to
our problem by adding more topologies to the DRL’s training that are
different between them.

The experimental results showed that the hybrid method of com-
bining DRL with LS enables efficient real-time routing optimization.
However, there is still room to push even further the combination
of DRL with traditional optimization methods. The straight-forward
approach would be to improve the LS implementation using high per-
formance software (e.g., Cython [32]). In addition, in our work we used
a greedy approach in Enero’s second stage but it could be substituted
by more advanced search algorithms (e.g., CP, Genetic Algorithms). For
example, the DRL’s solution could be converted to constraints and then
some CP solver (e.g., Gurobi [17]) could find a better solution. This
would ensure that the solution of the CP phase should be better than the
one from the DRL agent and it would enable the second optimization
stage to explore better solutions.

6. Related work

6.1. Routing optimization

To find the optimal routing configuration given an estimated traffic
matrix is a fundamental networking problem, which is known to be
NP-hard [9,36]. This problem has been largely studied in the past and
we outline some of the most relevant works. The early work from [5]
uses LS to find the best OSPF link weights to minimize congestion in the
most congested link. In DEFO [9] they propose a solution that converts
high-level optimization goals, indicated by the network operator, into
specific routing configurations using CP. Their problem formulation
leverages SR to find the best routing configuration for each traffic
demand. Within a SR path, they spread the traffic among several flows
using ECMP. In [37], the authors propose to use LS where they sacrifice
space exploration to achieve lower execution times. In their design they
also leverage heuristics to narrow down the LS neighborhood and to
make the algorithm converge faster to good solutions. A more recent
work [38] leverages the ILP and the column generation algorithm to
solve TE problems. Their solution also provides a mathematical bound
to indicate how far the solution is from the optimal one.



Computer Networks 214 (2022) 109166P. Almasan et al.

C
R
b
c

D

c
i

A

(
5
I
r
K
F

6.2. Machine learning for communication networks

Recently, numerous Machine Learning-based solutions have been
proposed to solve networking problems. In [39], they propose a generic
DRL framework for TE. In their TE problem formulation, their solution
consists of defining the optimal split ratios over a set of predefined
paths instead of changing the paths configuration. The work from [40]
applies DRL in a SDN context to solve a TE problem that maximizes
the switch’s throughput and minimizes the delay. The authors designed
a reward that allows tuning to optimize the upward or downward
throughput. In the field of optical networks, the work [41] proposes an
elaborated representation of the network state to help the DRL agent
learn to efficiently route traffic demands. A more recent work [42]
proposes a different approach where the authors combine DRL and
GNN to optimize the resource allocation in optical circuit-switched
networks. NeuroCuts [43] is a DRL-based solution for solving the packet
classification problem. AuTO [44] performs on-line traffic optimization
using DRL in data center scenarios. In their work they train a DRL agent
to change the queue’s thresholds and another DRL agent to determine
the priorities and rate limit for long flows. Decima [45] leverages
DRL and GNN for efficient scheduling of data processing jobs in data
clusters. RouteNet [46] proposes to use GNN for network modeling and
optimization.

7. Conclusion

Efficient real-time TE is important for network operators and ISPs
to ensure network reliability when external factors can disrupt the
proper network functioning. In this paper, we explored the use of DRL
for solving TE problems. Specifically, we presented Enero, a method
that combines DRL with LS to solve TE problems in real-time. The
experimental results show that Enero is able to operate efficiently
in real-world scenarios (e.g., dynamic traffic matrix, link failures). In
addition, the results indicate that Enero can achieve close-to-optimal
performance in less than 30 s for a set of arbitrary real-world network
topologies. We expect our solution to inspire future work on apply-
ing DRL for solving network optimization problems. Enero’s code is
publicly available3.

CRediT authorship contribution statement

Paul Almasan: Methodology, Investigation, Writing – review &
editing, Conceptualization. Shihan Xiao: Conceptualization. Xiangle
heng: Conceptualization. Xiang Shi: Conceptualization. Pere Barlet-
os: Writing – review & editing, Supervision, Conceptualization. Al-
ert Cabellos-Aparicio: Writing – review & editing, Supervision, Con-
eptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

This publication is part of the Spanish I+D+i project TRAINER-A
ref.PID2020-118011GB-C21), funded by MCIN/ AEI/ 10.13039/
01100011033. This work is also partially funded by the Catalan
nstitution for Research and Advanced Studies (ICREA) and the Sec-
etariat for Universities and Research of the Ministry of Business and
nowledge of the Government of Catalonia and the European Social
und.

3 https://github.com/BNN-UPC/ENERO
9

References

[1] H. Waldman, The impending optical network capacity crunch, in: 2018 SBFoton
International Optics and Photonics Conference (SBFoton IOPC), IEEE, Campinas,
Brazil, 2018, pp. 1–4, http://dx.doi.org/10.1109/SBFoton-IOPC.2018.8610949.

[2] G. Wellbrock, T.J. Xia, How will optical transport deal with future network traffic
growth?, in: 2014 The European Conference on Optical Communication (ECOC),
2014, pp. 1–3, http://dx.doi.org/10.1109/ECOC.2014.6964248.

[3] A. Ellis, N.M. Suibhne, D. Saad, D. Payne, Communication networks beyond the
capacity crunch, Phil. Trans. R. Soc. A 374 (2062) (2016) 20150191.

[4] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao, Overview and principles
of internet traffic engineering, in: RFC 3272, Tech. Rep, 2002.

[5] B. Fortz, M. Thorup, Internet traffic engineering by optimizing ospf weights, in:
Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064), 2, 2000, pp. 519–528, http://dx.doi.org/10.
1109/INFCOM.2000.832225.

[6] X. Xiao, A. Hannan, B. Bailey, L. Ni, Traffic engineering with mpls in the internet,
IEEE Network 14 (2) (2000) 28–33, http://dx.doi.org/10.1109/65.826369.

[7] B. Fortz, M. Thorup, Optimizing ospf/is-is weights in a changing world, IEEE
Journal on Selected Areas in Communications 20 (4) (2002) 756–767, http:
//dx.doi.org/10.1109/JSAC.2002.1003042.

[8] Z. Yang, Y. Cui, B. Li, Y. Liu, Y. Xu, Software-defined wide area network
(sd-wan): architecture, advances and opportunities, in: 2019 28th International
Conference on Computer Communication and Networks (ICCCN), 2019, pp. 1–9,
http://dx.doi.org/10.1109/ICCCN.2019.8847124.

[9] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp, P.
Francois, A declarative and expressive approach to control forwarding paths in
carrier-grade networks, SIGCOMM Comput. Commun. Rev. (ISSN: 0146-4833) 45
(4) (2015) 15–28, https://doi.org/10.1145/2829988.2787495.

[10] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap for traffic
engineering in sdn-openflow networks, Computer Networks (ISSN: 1389-1286)
71 (2014) 1–30, http://dx.doi.org/10.1016/j.comnet.2014.06.002.

[11] M. Lucas, D. Wrege, B. Dempsey, A. Weaver, Statistical characterization of wide-
area ip traffic, in: Proceedings of Sixth International Conference on Computer
Communications and Networks, 1997, pp. 442–447, http://dx.doi.org/10.1109/
ICCCN.1997.623349.

[12] K. Thompson, G. Miller, R. Wilder, Wide-area internet traffic patterns and
characteristics, IEEE Network 11 (6) (1997) 10–23, http://dx.doi.org/10.1109/
65.642356.

[13] Z. Wang, Z. Li, G. Liu, Y. Chen, Q. Wu, G. Cheng, Examination of wan traffic
characteristics in a large-scale data center network, in: Proceedings of the 21st
ACM Internet Measurement Conference, IMC ’21, Association for Computing
Machinery, New York, NY, USA, ISBN: 9781450391290, 2021, pp. 1–14, http:
//dx.doi.org/10.1145/3487552.3487860.

[14] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Transactions on Neural Networks 20 (1) (2009)
61–80, http://dx.doi.org/10.1109/TNN.2008.2005605.

[15] R. Bhatia, F. Hao, M. Kodialam, T. Lakshman, Optimized network traffic
engineering using segment routing, in: 2015 IEEE Conference on Computer
Communications (INFOCOM), 2015, pp. 657–665, http://dx.doi.org/10.1109/
INFOCOM.2015.7218434.

[16] C. Filsfils, N.K. Nainar, C. Pignataro, J.C. Cardona, P. Francois, The seg-
ment routing architecture, in: 2015 IEEE Global Communications Confer-
ence (GLOBECOM), 2015, pp. 1–6, http://dx.doi.org/10.1109/GLOCOM.2015.
7417124.

[17] L. Gurobi Optimization, Gurobi optimizer reference manual, 2021, [Online].
Availble: URL https://www.gurobi.com.

[18] I.I. Cplex, V12. 1: User’s manual for CPLEX, Int. Bus. Mach. Corp. 46 (53) (2009)
157.

[19] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The internet
topology zoo, IEEE Journal on Selected Areas in Communications 29 (9) (2011)
1765–1775, http://dx.doi.org/10.1109/JSAC.2011.111002.

[20] F. Rossi, P. Van Beek, T. Walsh, Handbook of Constraint Programming, Elsevier,
2006.

[21] Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, A.A. Cire, Combining
reinforcement learning and constraint programming for combinatorial optimiza-
tion, Proceedings of the AAAI Conference on Artificial Intelligence 35 (5) (2021)
3677–3687, https://ojs.aaai.org/index.php/AAAI/article/view/16484.

[22] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, H.J. Chao, Cfr-rl: traffic engineering with re-
inforcement learning in sdn, IEEE Journal on Selected Areas in Communications
38 (10) (2020) 2249–2259, http://dx.doi.org/10.1109/JSAC.2020.3000371.

http://dx.doi.org/10.1109/SBFoton-IOPC.2018.8610949
http://dx.doi.org/10.1109/ECOC.2014.6964248
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb3
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb3
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb3
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb4
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb4
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb4
http://dx.doi.org/10.1109/INFCOM.2000.832225
http://dx.doi.org/10.1109/INFCOM.2000.832225
http://dx.doi.org/10.1109/INFCOM.2000.832225
http://dx.doi.org/10.1109/65.826369
http://dx.doi.org/10.1109/JSAC.2002.1003042
http://dx.doi.org/10.1109/JSAC.2002.1003042
http://dx.doi.org/10.1109/JSAC.2002.1003042
http://dx.doi.org/10.1109/ICCCN.2019.8847124
https://doi.org/10.1145/2829988.2787495
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1109/ICCCN.1997.623349
http://dx.doi.org/10.1109/ICCCN.1997.623349
http://dx.doi.org/10.1109/ICCCN.1997.623349
http://dx.doi.org/10.1109/65.642356
http://dx.doi.org/10.1109/65.642356
http://dx.doi.org/10.1109/65.642356
http://dx.doi.org/10.1145/3487552.3487860
http://dx.doi.org/10.1145/3487552.3487860
http://dx.doi.org/10.1145/3487552.3487860
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/INFOCOM.2015.7218434
http://dx.doi.org/10.1109/INFOCOM.2015.7218434
http://dx.doi.org/10.1109/INFOCOM.2015.7218434
http://dx.doi.org/10.1109/GLOCOM.2015.7417124
http://dx.doi.org/10.1109/GLOCOM.2015.7417124
http://dx.doi.org/10.1109/GLOCOM.2015.7417124
https://www.gurobi.com
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb18
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb18
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb18
http://dx.doi.org/10.1109/JSAC.2011.111002
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb20
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb20
http://refhub.elsevier.com/S1389-1286(22)00271-7/sb20
https://ojs.aaai.org/index.php/AAAI/article/view/16484
http://dx.doi.org/10.1109/JSAC.2020.3000371


Computer Networks 214 (2022) 109166P. Almasan et al.
[23] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, S. Uhlig,
Elastic sketch: adaptive and fast network-wide measurements, in: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450355674, 2018, pp. 561–575, http://dx.doi.org/10.1145/3230543.
3230544.

[24] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman, V.
Sekar, Nitrosketch: robust and general sketch-based monitoring in software
switches, in: Proceedings of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’19, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450359566, 2019, pp. 334–350, http://dx.doi.org/10.1145/3341302.
3342076.

[25] Q. Huang, X. Jin, P.P.C. Lee, R. Li, L. Tang, Y.-C. Chen, G. Zhang, Sketchvisor:
robust network measurement for software packet processing, in: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450346535, 2017, pp. 113–126, http://dx.doi.org/10.1145/3098822.
3098831.

[26] J. Schulman, P. Moritz, S. Levine, M. Jordan, P. Abbeel, High-dimensional
continuous control using generalized advantage estimation, 2015, arXiv preprint
arXiv:1506.02438.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv preprint arXiv:1707.06347.

[28] Z. Ahmed, N. Le Roux, M. Norouzi, D. Schuurmans, Understanding the impact
of entropy on policy optimization, in: K. Chaudhuri, R. Salakhutdinov (Eds.),
Proceedings of the 36th International Conference on Machine Learning, in:
Proceedings of Machine Learning Research, 97, PMLR, 2019, pp. 151–160,
https://proceedings.mlr.press/v97/ahmed19a.html.

[29] A.A. Martín Abadi, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R.
Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, Software available
from tensorflow.org, 2015, [Online]. Available: https://www.tensorflow.org/.

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, Openai gym, 2016, arXiv preprint arXiv:1606.01540.

[31] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S.
Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, T.E. Oliphant, Array programming with numpy, Nature 585 (7825)
(2020) 357–362, http://dx.doi.org/10.1038/s41586-020-2649-2.

[32] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Cython:
The best of both worlds, Comput. Sci. Eng. 13 (2) (2011) 31–39, http://dx.doi.
org/10.1109/MCSE.2010.118, [Online]. Available.

[33] D.A.S. Aric A. Hagberg, P.J. Swart, Exploring network structure, dynamics,
and function using networkx. in: G. Varoquaux, T. Vaught, J. Millman (Eds.),
Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, 2008,
pp. 11–15.

[34] S. Gay, P. Schaus, S. Vissicchio, Repetita: Repeatable experiments for perfor-
mance evaluation of traffic-engineering algorithms, 2017, arXiv preprint arXiv:
1710.08665.

[35] U. Brandes, On variants of shortest-path betweenness centrality and their generic
computation, Social Networks (ISSN: 0378-8733) 30 (2) (2008) 136–145, http:
//dx.doi.org/10.1016/j.socnet.2007.11.001.

[36] D. Xu, M. Chiang, J. Rexford, Link-state routing with hop-by-hop forwarding can
achieve optimal traffic engineering, IEEE/ACM Transactions on Networking 19
(6) (2011) 1717–1730, http://dx.doi.org/10.1109/TNET.2011.2134866.

[37] S. Gay, R. Hartert, S. Vissicchio, Expect the unexpected: sub-second optimization
for segment routing, in: IEEE INFOCOM 2017 - IEEE Conference on Com-
puter Communications, 2017, pp. 1–9, http://dx.doi.org/10.1109/INFOCOM.
2017.8056971.

[38] M. Jadin, F. Aubry, P. Schaus, O. Bonaventure, Cg4sr: near optimal traffic
engineering for segment routing with column generation, in: IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 1333–1341,
http://dx.doi.org/10.1109/INFOCOM.2019.8737424.

[39] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C.H. Liu, D. Yang, Experience-driven
networking: a deep reinforcement learning based approach, in: IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp. 1871–1879,
http://dx.doi.org/10.1109/INFOCOM.2018.8485853.

[40] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, S.-C. Tsai, Rl-routing: an sdn routing
algorithm based on deep reinforcement learning, IEEE Transactions on Network
Science and Engineering 7 (4) (2020) 3185–3199, http://dx.doi.org/10.1109/
TNSE.2020.3017751.
10
[41] J. Suarez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, P. Barlet-Ros, A. Cabellos-
Aparicio, Feature engineering for deep reinforcement learning based routing, in:
ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019,
pp. 1–6, http://dx.doi.org/10.1109/ICC.2019.8761276.

[42] P. Almasan, J. Suárez-Varela, A. Badia-Sampera, K. Rusek, P. Barlet-Ros, A.
Cabellos-Aparicio, Deep reinforcement learning meets graph neural networks:
Exploring a routing optimization use case, 2019, arXiv preprint arXiv:1910.
07421.

[43] E. Liang, H. Zhu, X. Jin, I. Stoica, Neural packet classification, in: Proceedings of
the ACM Special Interest Group on Data Communication, SIGCOMM ’19, Asso-
ciation for Computing Machinery, New York, NY, USA, ISBN: 9781450359566,
2019, pp. 25–269, http://dx.doi.org/10.1145/3341302.3342221.

[44] L. Chen, J. Lingys, K. Chen, F. Liu, Auto: Scaling deep reinforcement learning
for datacenter-scale automatic traffic optimization, in: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, in:
SIGCOMM ’18, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 191–205, http://dx.doi.org/10.1145/3230543.3230551, [Online]. Availabel.

[45] H. Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh, Learning
scheduling algorithms for data processing clusters, in: Proceedings of the ACM
Special Interest Group on Data Communication, in: SIGCOMM ’19, Association
for Computing Machinery, New York, NY, USA, 2019, pp. 270–288, http://dx.
doi.org/10.1145/3341302.3342080, [Online]. Available.

[46] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, A. Cabellos-Aparicio,
Routenet: leveraging graph neural networks for network modeling and optimiza-
tion in sdn, IEEE Journal on Selected Areas in Communications 38 (10) (2020)
2260–2270, http://dx.doi.org/10.1109/JSAC.2020.3000405.

Paul Almasan received his B.Sc. and M.Sc. in Computer Sci-
ence from the Universitat Politècnica de Catalunya, Spain,
in 2017 and 2019 respectively. He is currently pursuing his
Ph.D. degree at the Barcelona Neural Networking Center.
His research interests are focused on Graph Neural Net-
works and Deep Reinforcement Learning applied to solving
real-world problems.

Shihan Xiao received the B.Eng. degree in electronic and
information engineering from the Beijing University of Post
and Telecommunications, Beijing, China, in 2012, and the
Ph.D. degree from the Department o Computer Science and
Technology, Tsinghua University, China. He is currently a
Senior Engineer with Huawei NetLab. His research inter-
ests include machine learning in networking, data center
networking, and cloud computing.

Xiangle Cheng received the M.Sc. degree in communication
and information system from Southwest Jiaotong Univer-
sity, Chengdu, China in 2015. He is currently a Ph.D.
candidate in Computer Science at the University of Exeter,
UK. His research interests include 5G SDN/NFV, Network
AI, Stochastic and Neural Combinatorial Optimization, In-
telligent Wireless Networks and Mobile Computing, and
Dynamic System Modeling and Performance Optimization.

Xiang Shi received her Bachelor’s degree from the Minzu
University of China, in 2014, and her PhD degree from
the Institute of Computing Technology, Chinese Academy
of Sciences in 2020. Currently she works in the Network
Technology Laboratory at Huawei Technologies.

http://dx.doi.org/10.1145/3230543.3230544
http://dx.doi.org/10.1145/3230543.3230544
http://dx.doi.org/10.1145/3230543.3230544
http://dx.doi.org/10.1145/3341302.3342076
http://dx.doi.org/10.1145/3341302.3342076
http://dx.doi.org/10.1145/3341302.3342076
http://dx.doi.org/10.1145/3098822.3098831
http://dx.doi.org/10.1145/3098822.3098831
http://dx.doi.org/10.1145/3098822.3098831
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v97/ahmed19a.html
https://www.tensorflow.org/
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://arxiv.org/abs/1710.08665
http://arxiv.org/abs/1710.08665
http://arxiv.org/abs/1710.08665
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1109/TNET.2011.2134866
http://dx.doi.org/10.1109/INFOCOM.2017.8056971
http://dx.doi.org/10.1109/INFOCOM.2017.8056971
http://dx.doi.org/10.1109/INFOCOM.2017.8056971
http://dx.doi.org/10.1109/INFOCOM.2019.8737424
http://dx.doi.org/10.1109/INFOCOM.2018.8485853
http://dx.doi.org/10.1109/TNSE.2020.3017751
http://dx.doi.org/10.1109/TNSE.2020.3017751
http://dx.doi.org/10.1109/TNSE.2020.3017751
http://dx.doi.org/10.1109/ICC.2019.8761276
http://arxiv.org/abs/1910.07421
http://arxiv.org/abs/1910.07421
http://arxiv.org/abs/1910.07421
http://dx.doi.org/10.1145/3341302.3342221
http://dx.doi.org/10.1145/3230543.3230551
http://dx.doi.org/10.1145/3341302.3342080
http://dx.doi.org/10.1145/3341302.3342080
http://dx.doi.org/10.1145/3341302.3342080
http://dx.doi.org/10.1109/JSAC.2020.3000405


Computer Networks 214 (2022) 109166P. Almasan et al.
Pere Barlet-Ros is an associate professor at Universi-
tat Politècnica de Catalunya and scientific director at the
Barcelona Neural Networking Center. From 2013 to 2018,
he was co-founder and chairman of the machine learning
startup Talaia Networks. The company was acquired by
Auvik Networks in 2018. He was also a visiting researcher
at Endace (New Zealand), Intel Research Cambridge (UK)
and Intel Labs Berkeley (USA). His research interests are
in machine learning technologies for network management
and optimization, traffic classification and network security.
In 2014, he received the 2nd VALORTEC prize for the best
business plan awarded by the Catalan Government (ACCIO)
and in 2015 the Fiber Entrepreneurs award as the best
entrepreneur of the Barcelona School of Informatics (FIB).
11
Albert Cabellos-Aparicio is an assistant professor at
Universitat Politècnica de Catalunya, where he obtained
his Ph.D. in computer science engineering in 2008. He is
director of the Barcelona Neural Networking Center and sci-
entific director of the NaNoNetworking Center in Catalunya.
He has been a visiting researcher at Cisco Systems and
Agilent Technologies, and a visiting professor at the KTH,
Sweden, and the MIT, USA. His research interests include
the application of Machine Learning to networking and
nanocommunications. His research achievements have been
awarded by the Catalan Government, his university, and
INTEL. He also participates regularly in standardization
bodies such as the IETF.


	ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning
	Introduction
	Background
	Problem statement
	Shortcomings of existing solutions
	Deep reinforcement learning for traffic engineering

	Design
	Two-stage optimization
	Performance lower bound
	Deep reinforcement learning agent
	Workflow
	Training algorithm

	Experimental results
	Implementation
	Methodology
	Traffic matrices
	Network topologies
	DRL agent training
	Comparison baselines

	DRL and LS hybrid method
	Dynamic traffic matrix
	Link failures
	Operation performance and cost

	Discussion
	Related work
	Routing optimization
	Machine learning for communication networks

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


