604 research outputs found

    A Multi-Grid Iterative Method for Photoacoustic Tomography

    Get PDF
    Inspired by the recent advances on minimizing nonsmooth or bound-constrained convex functions on models using varying degrees of fidelity, we propose a line search multigrid (MG) method for full-wave iterative image reconstruction in photoacoustic tomography (PAT) in heterogeneous media. To compute the search direction at each iteration, we decide between the gradient at the target level, or alternatively an approximate error correction at a coarser level, relying on some predefined criteria. To incorporate absorption and dispersion, we derive the analytical adjoint directly from the first-order acoustic wave system. The effectiveness of the proposed method is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm (ISTA) and its accelerated variant (FISTA), which have been used in many studies of image reconstruction in PAT. The results show the great potential of the proposed method in improving speed of iterative image reconstruction

    A Framework for Directional and Higher-Order Reconstruction in Photoacoustic Tomography

    Get PDF
    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered backprojection, time reversal and least squares suffer from curved line artefacts and blurring, especially in case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge on the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography. It enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator dependent preconditioning strategy. Our reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.Comment: submitted to "Physics in Medicine and Biology". Changes from v1 to v2: regularisation with directional wavelet has been added; new experimental tests have been include

    Photoacoustic Tomography in a Rectangular Reflecting Cavity

    Get PDF
    Almost all known image reconstruction algorithms for photoacoustic and thermoacoustic tomography assume that the acoustic waves leave the region of interest after a finite time. This assumption is reasonable if the reflections from the detectors and surrounding surfaces can be neglected or filtered out (for example, by time-gating). However, when the object is surrounded by acoustically hard detector arrays, and/or by additional acoustic mirrors, the acoustic waves will undergo multiple reflections. (In the absence of absorption they would bounce around in such a reverberant cavity forever). This disallows the use of the existing free-space reconstruction techniques. This paper proposes a fast iterative reconstruction algorithm for measurements made at the walls of a rectangular reverberant cavity. We prove the convergence of the iterations under a certain sufficient condition, and demonstrate the effectiveness and efficiency of the algorithm in numerical simulations.Comment: 21 pages, 6 figure

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology

    An optimized ultrasound detector for photoacoustic breast tomography

    Get PDF
    Photoacoustic imaging has proven to be able to detect vascularization-driven optical absorption contrast associated with tumors. In order to detect breast tumors located a few centimeter deep in tissue, a sensitive ultrasound detector is of crucial importance for photoacoustic mammography. Further, because the expected photoacoustic frequency bandwidth (a few MHz to tens of kHz) is inversely proportional to the dimensions of light absorbing structures (0.5 to 10+ mm), proper choices of materials and their geometries, and proper considerations in design have to be made for optimal photoacoustic detectors. In this study, we design and evaluate a specialized ultrasound detector for photoacoustic mammography. Based on the required detector sensitivity and its frequency response, a selection of active material and matching layers and their geometries is made leading to a functional detector models. By iteration between simulation of detector performances, fabrication and experimental characterization of functional models an optimized implementation is made and evaluated. The experimental results of the designed first and second functional detectors matched with the simulations. In subsequent bare piezoelectric samples the effect of lateral resonances was addressed and their influence minimized by sub-dicing the samples. Consequently, using simulations, the final optimized detector could be designed, with a center frequency of 1 MHz and a -6 dB bandwidth of ~80%. The minimum detectable pressure was measured to be 0.5 Pa, which will facilitate deeper imaging compared to the currrent systems. The detector should be capable of detecting vascularized tumors with resolution of 1-2 mm. Further improvements by proper electrical grounding and shielding and implementation of this design into an arrayed detector will pave the way for clinical applications of photoacoustic mammography.Comment: Accepted for publication in Medical Physics (American Association of Physicists in Medicine
    • …
    corecore