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Abstract
Almost all known image reconstruction algorithms for photoacoustic and
thermoacoustic tomography assume that the acoustic waves leave the region
of interest after a finite time. This assumption is reasonable if the reflections
from the detectors and surrounding surfaces can be neglected or filtered out
(for example, by time-gating). However, when the object is surrounded by
acoustically hard detector arrays, and/or by additional acoustic mirrors, the
acoustic waves will undergo multiple reflections. (In the absence of absorption,
they would bounce around in such a reverberant cavity forever.) This disallows
the use of the existing free-space reconstruction techniques. This paper proposes
a fast iterative reconstruction algorithm for measurements made at the walls of a
rectangular reverberant cavity. We prove the convergence of the iterations under
a certain sufficient condition, and demonstrate the effectiveness and efficiency
of the algorithm in numerical simulations.

Introduction

Photoacoustic tomography (PAT) and the closely related modality thermoacoustic tomography
(TAT) [3, 14, 15, 26, 28] are based on the photoacoustic effect, in which an acoustic wave
is generated by the absorption of an electromagnetic (EM) pulse. The distinction between
PAT and TAT is that the former uses visible or near-infrared light, while the latter uses
energy in the microwave region. There are several endogenous chromophores which absorb
in these wavelength ranges, the most important of which are oxy- and deoxy-hemoglobin, and
externally administered, molecularly-targeted, chromophores can be used as contrast agents.
These emerging modalities are therefore attracting considerable interest for molecular and
functional imaging applications in pre-clinical and clinical imaging.

When EM pulses at these wavelengths are sent into biological tissue, the EM energy
will be absorbed and then thermalized. When this happens sufficiently rapidly, there will be
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simultaneous, small, increases in the temperature and pressure in the regions where the energy
was absorbed. As tissue is an elastic medium, the pressure increase propagates as an acoustic
(ultrasonic) pulse, and can be detected as a time series at the boundary of the tissue. The image
of the initial pressure distribution can subsequently be reconstructed from these measurements
by solving a certain inverse problem. Since acoustic waves propagate through soft tissues with
little absorption or scattering, PAT and TAT yield high-resolution images related to the EM
properties of the tissue. Such images cannot be obtained by purely optical or electrical (or
EM) techniques, such as, diffuse optical tomography or electrical impedance tomography.

In order to facilitate the acoustic measurements, the object is usually submerged in water
or a gel with acoustic properties close to those of the tissues. One method of measuring
the acoustic pressure is to use a small single-element detector to record the time-dependent
acoustic pressure at a point. In order to obtain enough data for the reconstruction, the detector
is scanned across an imaginary acquisition surface surrounding the region of interest; the
EM pulse must be re-emitted for each new location of the detector. The wave propagation
within such an acquisition scheme can be modeled by the free-space wave equation, as the
reflection of the waves from the single detector does not affect the measurement at that detector.
The corresponding inverse problem has been studied extensively (see, for example reviews
[16, 27, 28] and references therein), and various reconstruction techniques have been developed
to solve it. These techniques include time reversal [4, 13, 30], series expansion methods [1, 12,
19, 21, 24, 25] and several explicit inversion formulas [9, 10, 18, 20, 23, 31] (the references
above are by no means exhaustive).

In order to significantly speed up the data acquisition, the measurements may be made
by an array of detectors. (Both piezoelectric and optically-addressed arrays have been used).
Such an array typically forms a solid surface, a side effect of which is that the sound waves
are reflected back into the region of interest. In the case of a single planar array the free-space
reconstruction methods still apply, since the reflected waves will propagate away from the
detector and will not affect the measurements. However, it is not possible to obtain exact
reconstructions from data measured on a finite section of a plane. To overcome this limitation,
more advanced measuring systems will have the object surrounded by the detector arrays
(or perhaps intentionally installed acoustic mirrors, e.g. [5]). One such system, based on
optically-addressed Fabry–Perot detection arrays, is currently being investigated. The waves
within the reverberant cavity formed by the detectors and passive reflectors will undergo
multiple reflections. Under the idealized assumption of negligible acoustic absorption used
by most classical methods, the oscillations within such a cavity will continue forever. All
the standard reconstruction techniques assume that the signal either has a final duration (due
to Huygens’ principle in 3D) or dies out sufficiently fast (in two-dimensional (2D) or in the
presence of non-uniform speed of sound). As a result, these techniques are not applicable in
the presence of such multiple reflections.

In this paper, we develop an algorithm for reconstructing the initial pressure distribution
within a rectangular reverberant cavity from acoustic pressure time series measurements made
on at least three mutually adjacent walls. The algorithm first finds a crude initial approximation
that can be further refined iteratively. The derivation of the algorithm is presented in section 2,
together with the convergence analysis for the iterations (section 2.4). The algorithm was tested
in numerical simulations (section 3) that showed both the high quality of the reconstruction
and very low noise sensitivity of the proposed technique.

High-resolution images in 3D utilized in modern biomedical practice are described by
hundreds millions of unknowns. In order to be useful in practice, a reconstruction algorithm
must be fast. The proposed technique is asymptotically fast; it requires O(N3 log N) floating
point operations (flops) per iteration on an N×N×N computational grid. In our simulations, the
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reconstruction time was comparable with that of known fast algorithms for various free-space
problems (e.g. [19, 21]).

1. Formulation of the problem

1.1. Photoacoustic tomography in free space

In conventional PAT, time domain measurements of the photoacoustically generated acoustic
waves are made by an array of ultrasound detectors positioned on a measurement surface.
The inverse problem of PAT/TAT consists in finding the initial pressure distribution from the
measurements. Several idealizing assumptions are typically made to simplify this problem.
First, the speed of sound is frequently assumed to be known and constant throughout the whole
space, i.e. the presence of any physical boundaries is neglected. Second, it is assumed that the
measurements are done at all points lying on some imaginary observation surface surrounding
the object of interest. Third, the detectors are considered small and non-reflecting (acoustically
transparent). Under these assumptions the acoustic waves can be considered as propagating in
free space (Rn, n = 2 or 3) and the acoustic pressure p = p(t, x) is a solution to the following
(free-space) initial value problem (IVP):(

∂2

∂t2
− c2

0�

)
p = 0, x ∈ Rn, t ∈ [0,∞), (1)

p|t=0 = f (x),
∂ p

∂t

∣∣∣∣
t=0

= 0 (2)

where f (x) is the initial acoustic pressure distribution. Given time series measurements g of
the acoustic pressure at each point of the observation surface S surrounding the region of
interest � (within which f (x) is supported)

g = p(t, x) x ∈ S, t ∈ [0, T ],

it is possible to reconstruct f (x) exactly. Indeed, since S is not a physical boundary, for a
sufficiently large time T , the pressure p in � will vanish. (In 3D, due to the Huygens principle,
the pressure will vanish after T = diam(�)/c0. In 2D, the pressure does not completely vanish
in finite time; however, it will decay fast enough that it can be approximately set to 0 at a
sufficiently large value of T � diam(�)/c0.)

Now one can solve in � the following initial/boundary value problem (IBVP):(
∂2

∂t2
− c2

0�

)
p = 0, t ∈ [0, T ], x ∈ �, (3)

p|t=T = 0,
∂ p

∂t

∣∣∣∣
t=T

= 0, p|x∈S = g(t, x), (4)

backwards in time (from t = T to t = 0), thus obtaining f (x) = p(0, x). This technique is
called time reversal. It is theoretically exact and works for an arbitrary closed surface S; many
of the existing reconstruction methods are based on this idea. For instance, one can solve
IBVP (3), (4) directly using numerical techniques [10, 13, 30]. Eigenfunction decomposition
techniques [1, 19] and some of the known inversion formulas [20] yield reconstructions that are
theoretically equivalent to those obtained by time reversal. In each case the crucial underlying
assumption is that the values of the pressure are recorded until the acoustic wave vanishes
within �.

1.2. Photoacoustic tomography in a reflective cavity

The methods of the previous section can be used so long as the detectors (or anything else such
as the tank walls) do not reflect the acoustic waves. When an array of detectors is used, instead
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of a single scanned detector, the situation will change as the array itself will reflect the wave. In
the case of a single planar array, the traditional reconstruction techniques still apply, since the
reflected waves will propagate away from the detector and will not affect the measurements.
However, the images reconstructed from measurements made using a single finite-sized planar
array configuration will contain ‘partial view’ or ‘limited data’ artifacts because the acoustic
waves traveling parallel (or almost parallel) to the surface are not measured. In order to improve
the reconstruction one could either reflect those waves back on the detector array using passive
reflectors [5], or add new (perpendicular) detector arrays. If the region of interest is surrounded
by the arrays and/or reflectors, a reverberant cavity is formed. (Note that the free surface of a
liquid also reflects waves). Wave propagation in a reverberant cavity is no longer represented
by the IVP (1), and a different mathematical model is needed.

The proper model should take into account that the domain � is surrounded by a reflecting
boundary ∂�, and the corresponding boundary conditions should be imposed on the wave
equation (as opposed to the free-space propagation discussed in the previous section). The
measurement surface S is now a subset of the boundary ∂�.

When the boundary is treated as sound-hard the acoustic pressure p(t, x) is a solution to
the following IBVP:(

∂2

∂t2
− c2

0�

)
p = 0, x ∈ � (5)

p(0, x) = f (x),
∂ p(0, x)

∂t
= 0, (6)

∂

∂n
p(t, x) = 0, x ∈ ∂�. (7)

Now the measurements can be written as

g = p(t, x) x ∈ S ⊆ ∂�, t ∈ [0, T ].

Other boundary conditions might be appropriate in some circumstances, such as for
instance if the cavity were built as a tank and one part of the boundary was a water–air
interface where p ≈ 0, i.e. Dirichlet conditions are imposed on this part of the boundary. Also,
it is not necessary to measure the pressure on the whole boundary ∂�, and so S is only a
subset of ∂�. (Taking this to an extreme, Cox et al [6] proposed using a single measurement
point when the cavity is ray-chaotic. This scheme, however, is unlikely to yield a stable
reconstruction.)

A distinct property of this model is the preservation of the acoustic energy trapped within
the cavity. Since the model assumes that there is no absorption of the acoustic energy by
the medium, and the (Neumann or Dirichlet) boundary conditions correspond to a complete
reflection of waves, the oscillations within � will (theoretically) continue forever. In practice,
of course, this is not the case and the waves will soon decrease to the extent that further
measurements will become impossible due to the low signal-to-noise ratio. While we are
not explicitly modeling the absorption, we have to assume that the measurement time T is
bounded. It will be chosen to correspond, roughly, to several bounces of the acoustic wave
between the cavity walls.

The preservation of acoustic energy within the reverberating cavity makes it impossible
to solve the inverse problem by the time reversal techniques mentioned in section 1.1. Indeed,
in order to obtain the accurate reconstruction of f one has to accurately prescribe conditions
p(T, x) and ∂ p/∂t(T, x) to initialize the time reversal. However, there is no way to measure
these data within the object. Moreover, these values are of the same order of magnitude as
f , and if one simply replaces them by a zero (as we can safely do in the free-space case),
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x2 

x1 

reflectors

reflecting detector arrays

Figure 1. The 2D reverberant cavity with two passive reflecting walls, and two reflecting detector
arrays on which the data g1(t, x2) and g2(t, x1) are measured.

the induced error will also be of the same magnitude as f we seek to reconstruct. Therefore,
almost none of the known reconstruction algorithms are applicable here (with the exception of
[2, 5, 6, 29]). Below we propose inversion techniques suitable for PAT within the reverberant
cavity.

2. Derivation of the reconstruction algorithm

In this section, we develop a fast and accurate reconstruction algorithm for PAT within a
rectangular reverberant cavity. On one hand, such an acquisition geometry is one of the
simplest from the mathematical standpoint, allowing one to design a simple and fast Fourier-
based reconstruction technique. On the other hand, photoacoustic scanners with this particular
configuration are quite conceivable—indeed a design based on optically-addressed Fabry–
Perot ultrasound arrays [32] is currently under development—and algorithms will be needed
to process the data.

The reconstruction technique we propose can be used in both 2D and 3D settings, with
only minor changes. The 3D case is, obviously, more interesting from the applied point of
view, while the 2D case is somewhat easier to present. Thus, in the next section we provide a
derivation for the 2D algorithm, with the caveat that the 3D case is quite similar. In section 3,
we test the 3D version of the algorithm in numerical simulations.

2.1. 2D formulation and the series solution of the forward problem

We assume that the acoustic pressure p(t, x), x = (x1, x2) solves the IBVP (5)–(7) in 2D, in a
square � = [0, 1]× [0, 1]. Without loss of generality, the speed of sound c0 will be assumed to
equal 1. The measurements are represented by the pair of time series g = (g1(t, x2), g2(t, x1))

corresponding to the pressure values on the two adjacent sides of the square � (figure 1):

g1(t, x2) = p(t, x)|x1=0, g2(t, x1) = p(t, x)|x2=0, t ∈ [0, T ].

Let us denote by W the linear operator transforming the initial condition f (x) into the
boundary data g:

g = W( f ).

Our ultimate goal is to reconstruct the initial pressure f (x) = p(0, x) from g, i.e. to
invert W .

5
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The simple shape of the domain � allows us to utilize the eigenfunctions

ϕk,l(x) = cos(πkx1) cos(π lx2)

of the Neumann Laplacian in a square

(� + ω2
k,l )ϕk,l = 0, x ∈ �,

∂ϕk,l

∂n
= 0, x ∈ ∂�,

with the eigenfrequencies ωk,l :

ωk,l = π
√

k2 + l2, k, l = 0, 1, 2, . . . .

Using the eigenpairs (ϕk,l, ωk,l ), the solution p(t, x) of the forward IBVP (5)–(7) can be
represented by the following series:

p(t, x) =
∞∑

k=0

∞∑
l=0

fk,l cos(πkx1) cos(π lx2) cos(ωk,lt), x ∈ �, t ∈ [0, T ], (8)

where numbers fk,l are the coefficients of the 2D Fourier cosine series of the initial pressure
f (x):

fk,l = 1

||ϕk,l ||22

∫
�

f (x)ϕk,l(x) dx, k, l = 0, 1, 2, . . . , (9)

||ϕk,l||22 =
∫

�

ϕ2
k,l(x) dx =

⎧⎨⎩
1
4 , k �= 0 and l �= 0,

1, k = 0 and l = 0,
1
2 , otherwise.

(10)

For future use we will denote the double-indexed sequence of the Fourier coefficients by
F = { fk,l}∞k,l=0, and will use the notation Fseries to refer to the transformation defined by
equations (9) and (10), so that

F = Fseries f .

Obviously, in order to obtain f (x) it is enough to reconstruct coefficients F; function f is
then computed by inverting Fseries, i.e. by summing the Fourier cosine series:

f (x) = F−1
seriesF =

∞∑
k=0

∞∑
l=0

fk,l cos(πkx1) cos(π lx2).

2.2. What can be found from the data measured on one side?

Let us first analyze the connection between coefficients fk,l and the data measured on one side
of the square (say, g2):

g2(t, x1) ≡ p(t, x)|x2=0 =
∞∑

k=0

∞∑
l=0

fk,l cos(πkx1) cos(ωk,lt), t ∈ [0, T ]. (11)

Due to the orthogonality of the cosine functions (in variable x1) the above equation splits:
∞∑

l=0

fk,l cos(ωk,lt) = g2,k(t), t ∈ [0, T ], k = 0, 1, 2, . . . , (12)

g2,0(t) ≡
∫ 1

0
g2(x1, t) dx1, g2,k(t) ≡ 2

∫ 1

0
g2(x2, t) cos(πkx1) dx1, k = 1, 2, 3, . . . . (13)

It follows from equation (12) that each of the k functions g2,k(t) is a combination of cosine
functions in t with known frequencies; the values fk,l can be viewed as generalized Fourier
coefficients. More precisely, equation (12) can be re-written as the inverse Fourier transform
F−1 of a sequence of Dirac delta-functions:

6
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g2,k(t) =
√

2πF−1

[ ∞∑
l=0

fk,l
δ(ξ − ωk,l ) + δ(ξ + ωk,l )

2

]
,

where the forward and inverse Fourier transforms of some function h(t) are defined as follows:

ĥ(ξ ) ≡ (Fh)(ξ ) ≡ 1√
2π

∫
R

h(t) e−iξ t dt,

h(t) ≡ (F−1ĥ)(t) ≡ 1√
2π

∫
R

ĥ(ξ ) eiξ t dξ .

One can conclude that the Fourier transform ĝ2,k(ξ ) of g2,k(t) is the following distribution:

ĝ2,k(ξ ) =
√

2π

∞∑
l=0

fk,l
δ(ξ − ωk,l ) + δ(ξ + ωk,l )

2
. (14)

It is tempting to try to recover coefficients fk,l by applying the Fourier transform F to each
g2,k(t) and thus obtaining ĝ2,k(ξ ). However, functions g2,k(t) do not vanish at infinity, and
they (in general) are not periodic on any finite interval [0, T ]. Therefore, such a computation
would be quite inaccurate, at best.

A technique well known in digital signal processing as a way to Fourier transform long
time series is to multiply the signal by a window function. For convenience, let us extend
g2,k(t) as an even function to the interval [−T, T ] (formulas (11) and (12) will remain valid
under such extension). Consider now an even, infinitely smooth function η(t) vanishing with
all its derivatives at −1 and 1, and its scaled version ηT (t) = η(t/T ). Since the product
ηT (t)g2,k(t) is periodic on [−T, T ], its Fourier transform

η̂T g2,k(ξ ) ≡ 1√
2π

∫ T

−T
ηT (t)g2,k(t) e−iξ t dt, (15)

can be easily computed (for example, by applying the composite trapezoid rule to the
discretized signal). Now, by the convolution theorem

η̂T g2,k(ξ ) = 1√
2π

η̂T (ξ ) ∗ ĝ2,k(ξ ) = 1√
2π

∫
R

η̂T (ζ − ξ )ĝ2,k(ζ ) dζ ,

and, taking into account the equality η̂T (ξ ) = T η̂(Tξ ) and equation (14) one obtains

η̂T g2,k(ξ ) =
∞∑

m=0

fk,m
η̂T (ξ − ωk,m) + η̂T (ξ + ωk,m)

2

= T
∞∑

m=0

fk,m
η̂(T (ξ − ωk,m)) + η̂(T (ξ + ωk,m))

2
.

Function η̂T (ξ ) is infinitely smooth (as a Fourier transform of a finitely supported
function), and vanishes at infinity faster than any rational function in ξ (since η(t) is infinitely
smooth). One may view the problem of reconstruction of ĝ2,k(ξ ) from η̂T (ξ ) ∗ ĝ2,k(ξ ) as
a deconvolution problem. Due to the smoothness of the convolution kernel η̂T (ξ ), such a
deconvolution is an extremely ill-posed problem.

Fortunately, the problem at hand can be solved without resorting to standard deconvolution
techniques. Since we know a priori that the ĝ2,k(ξ ) is a combination of delta-functions
(with unknown coefficients fk,l ) whose positions in the frequency space are known (see
equation (14)), the problem becomes much simpler. Let us consider the values of η̂T g2,k

only at the frequencies ωk,l . Then, for each fixed k we obtain the following system of linear
equations with respect to unknown fk,m:

7
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T
∞∑

m=0

fk,m
η̂(T (ωk,l − ωk,m)) + η̂(T (ωk,l + ωk,m))

2
= η̂T g2,k(ωk,l ), l = 0, 1, 2, . . . .

(16)

Further, by separating the ‘diagonal’ terms this system can be re-written in the form

fk,l + η̂(2Tωk,l )

η̂(0)
fk,l +

∞∑
m=0
m �=l

η̂(T (ωk,l − ωk,m)) + η̂(T (ωk,l + ωk,m))

η̂(0)
fk,m = 2

T

η̂T g2,k(ωk,l )

η̂(0)

(17)

for l = 0, 1, 2, . . . , k = 0, 1, 2, . . . , except the case when k = l = 0 which assumes a simple
form

f0,0 +
∞∑

m=0
m �=l

η̂(Tω0,m)

η̂(0)
f0,m = 1

T

η̂T g2,0(ω0,0)

η̂(0)
. (18)

Let us discuss the properties of these systems (one system for every value of k). Due to
the fast decrease of η̂T (ξ ) at infinity, as T goes to infinity, values of η̂(T (ωk,l − ωk,m)) and
η̂(T (ωk,l + ωk,m)) converge to zero, and the system becomes diagonal. This suggests that for
sufficiently large values of T one can try to approximately solve the problem by the formula

fk,l ≈ 2

T

η̂T g2,k(ωk,l )

η̂(0) + η̂(2Tωk,l )
, k, l = 0, 1, 2, . . . , (19)

f0,0 ≈ 1

T

η̂T g2,0(ω0,0)

η̂(0)
(20)

and thus to reconstruct p0(x) from the measurements made on one side of the square �.
Examples of such approximate reconstructions can be found in [7]; it is clear that the

images are distorted by noticeable artifacts. A closer look at the functions η̂(T (ωk,l − ωk,m))

reveals the reason for these distortions. The convergence of these functions to zero depends
on the values of the difference ωk,l − ωk,m which is not uniform with respect to k and l. In
particular, for large values of k and l = 0 and m = 1, this difference can be approximately
estimated as follows:

ωk,1 − ωk,0 = π(
√

k2 + 1 −
√

k2) = πk(
√

1 + 1/k2 − 1t) ≈ π

2k
,

so that the value of T (ωk,l − ωk,m) is not large for large values of k. This implies that for
any (large) value of T there are some values of k, l and m for which off-diagonal terms are
not small, and approximation (19) is not accurate. Moreover, one may suspect (and numerical
simulations confirm this) that the equations with large values of k and small values of l are a
source of instability, so that attempts to solve system (17) numerically (for large k) lead to a
significant amplification of the noise present in the data.

2.3. Reconstruction using data measured on two adjacent sides

As shown below, one can eliminate this instability by using not all equations (17) but only
those for l = k, k + 1, k + 2, . . . . The missing information can be obtained from the data
g1(x2, t) measured on the second side of the square corresponding to x1 = 0. Define functions
g1,l (t) by the equations

g1,l (t) ≡ 2
∫ 1

0
g1(x2, t) cos(π lx2) dx2.

The derivation similar to the one in the previous section yields the following system of
equations:

8
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fk,l + η̂(2Tωk,l ) fk,l +
∞∑

m=0
m �=k

η̂(T (ωk,l − ωm,l )) + η̂(T (ωk,l + ωm,l ))

η̂(0)
fk,m = 2

T

η̂T g1,l (ωk,l )

η̂(0)
,

(21)

k, l = 0, 1, 2, . . . (with a simpler formula for the case k = l = 0 which we will omit).
We, however, are going to use only half of these equations, namely those corresponding to
k = l + 1, l + 2, l + 3, . . . in combination with a half of the equations (17), arriving at the
following set of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f0,0 + ∑∞
m=0
m �=l

η̂(T (ω0,m))

η̂(0)
f0,m = 1

T
η̂T g2,0(ω0,0)

η̂(0)
, l = k = 0,

fk,l + η̂(2Tωk,l ) fk,l + ∑∞
m=0
m �=l

η̂(T (ωk,l−ωk,m ))+η̂(T (ωk,l+ωk,m ))

η̂(0)
fk,m = 2

T
η̂T g2,k(ωk,l )

η̂(0)
, l � k,

fk,l + η̂(2Tωk,l ) fk,l + ∑∞
m=0
m �=k

η̂(T (ωk,l−ωm,l ))+η̂(T (ωk,l+ωm,l ))

η̂(0)
fk,m = 2

T
η̂T g1,l (ωk,l )

η̂(0)
, k > l.

(22)

Since for very large values of T factors η̂(T (· · ·)) vanish (while η̂(0) is a constant), one can
compute a crude approximation f (0)(x) by defining the coefficients F (0) as follows:

f (0)

k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

T

η̂T g2,0(ω0,0)

η̂(0)
, k = l = 0,

2

T

η̂T g2,k(ωk,l )

η̂(0)
, l � k

2

T

η̂T g1,l (ωk,l )

η̂(0)
, k > l

, (23)

F (0) = {
f (0)

k,l

}∞
k,l=0, (24)

and by summing the Fourier series

f (0)(x) = [
F−1

seriesF
(0)

]
(x). (25)

Formulas (23) and (24) define a linear operator R that maps boundary values g into the set of
Fourier coefficients F , so that

f (0) = F−1
seriesF

(0) = F−1
seriesRg =F−1

seriesRW f .

As our numerical experiments show, approximation f (0) yields qualitatively correct
images even for moderate values of T . Our goal, however, is to obtain a quantitatively accurate,
theoretically exact reconstruction. Forming and decomposing a matrix corresponding to the
system (22) (after proper truncation of the spatial harmonics) is computationally prohibitive,
since the number of unknowns in the 3D high-resolution images can reach hundreds of millions.
Instead, we will solve this system iteratively.

Let us define an operator A that transforms a 2D sequence of numbers H = {hk,m}∞k,m=0
into a 2D sequence of numbers E = {ek,m}∞k,m=0 by the formulas

e0,0 =
∞∑

m=0
m �=l

η̂(T (ω0,m))

η̂(0)
h0,m, l = k = 0,

ek,l = η̂(2Tωk,l )

η̂(0)
hk,l +

∞∑
m=0
m �=l

η̂(T (ωk,l − ωk,m)) + η̂(T (ωk,l + ωk,m))

η̂(0)
hk,m, l � k,

el,k = η̂(2Tωk,l )

η̂(0)
hk,l +

∞∑
m=0
m �=k

η̂(T (ωk,l − ωm,l )) + η̂(T (ωk,l + ωm,l ))

η̂(0)
hk,m, k > l, (26)

9
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or, in the operator notation,

E = AH.

Then equations (22) can be re-written as

(I + A)F = F (0), (27)

where F is the set of the Fourier coefficients of the sought f (x), and F (0) are the Fourier
coefficients of the initial, crude approximation f (0)(x). If the spectral radius of operator A is
less than 1, the unique solution of equation (27) can be found in the form of a converging
Neumann series

F =
∞∑

K=0

(−A)KF (0). (28)

Function f (x) is then found from F by summing the Fourier series (see (25)). Alternatively,
this solution (F) can be represented as the limit of iterations defined by the recurrence relation

F (K) = F (0) − AF (K−1), K = 1, 2, 3, . . . . (29)

In section 2.4, we analyze operator A and find a sufficient condition for the convergence of
the Neumann series (28).

In practical computations we are not evaluating series (28) directly, since this is still
expensive. By summing the Fourier series (i.e. by applying the F−1

series operator), iterations (29)
can be replaced by the equivalent relation

f (K)(x) = f (0)(x) − F−1
seriesAF series f (K−1), K = 1, 2, 3, . . .

or

f (K)(x) = F−1
seriesRg − F−1

seriesAF series f (K−1), K = 1, 2, 3, . . . . (30)

On the other hand, it follows from (27) that

(I + A)F series f = RW f ,

and, since (27) holds for any initial condition f (x), the following operator identity holds:

F−1
series(I + A)F series = F−1

seriesRW.

Thus,

−F−1
seriesAF series = I − F−1

seriesRW,

and, therefore, recurrence relation (30) is equivalent to

f (K) = F−1
seriesRg+ f (K−1) − F−1

seriesRW f (K−1), K = 1, 2, 3, . . .

or to

f (K) = f (K−1) + F−1
seriesR(g − W f (K−1)), K = 1, 2, 3, . . . , (31)

f (0) = F−1
seriesRg. (32)

Our computational algorithm is based on equations (31) and (32); these iterations are
theoretically equivalent to those defined by equation (29) and have the same convergence
properties. The computational advantage in using (31) and (32) lies in the possibility of
easily implementing all the necessary operations using fast transforms (fast Fourier transforms
(FFTs)). The implementation details are discussed in section 3. In the next section, we analyze
the convergence of such iterations, and form (29) is more convenient for this purpose.

10
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2.4. Convergence analysis

Let us consider the || · ||∞ norm defined on the space of double-indexed infinite sequences
H = {hk,l}∞k,l=0:

||H||∞ = sup
k,l=0.1,2,3,...

|hk,l |,

and a space L of such sequences with bounded || · ||∞ norm. Further, for a linear operator
B : L → L define the induced ∞-norm:

||B||∞ = sup
||H||∞�=0

||B(H)||∞
||H||∞ .

Our goal is to estimate the induced ∞-norm of the operator A defined by equations (26) in
the previous sections. These equations contain factors in the form η̂(T (ωk,l −ωk,m)). Note that
for a sufficiently smooth cut-off function η(t) its Fourier transform declines fast at infinity:

|̂η(ξ )| � B

1 + |ξ |2 . (33)

Let us find a lower bound on |ωk,l − ωk,m|. Consider first the case l � k:

|ωk,l − ωk,m| = π |
√

k2 + l2 −
√

k2 + m2| = π |l − m|(l + m)√
k2 + l2 + √

k2 + m2
.

If, in addition, m � k, the above equation yields

|ωk,l − ωk,m| � π
|l − m|(l + m)√

2(l + m)
= π |l − m|√

2
.

If m < k (and l � k),

|ωk,l − ωk,m| � π |l − m|(l + m)√
2(l + k)

� π |l − m|(l + m)

2
√

2l
� π |l − m|

2
√

2
,

so that the uniform bound holds if l � k for all values of m:

|ωk,l − ωk,m| � π |l − m|
2
√

2
.

Now one can bound |̂η(T (ωk,l − ωk,m))|, still under assumption l � k:

|̂η(T (ωk,l − ωk,m))| � B

1 + T 2(ωk,l − ωk,m)2
� B

1 + π2T 2(l − m)2/8

� B

π2T 2(l − m)2/8
, if m �= l. (34)

Similarly, if l > 0 or k > 0,

|̂η(T (ωk,l + ωk,m))| � B

1 + T 2(ωk,l + ωk,m)2
� B

1 + T 2π2(1 + m2)
� B

T 2π2(1 + m2)
(35)

and

|̂η(2Tωk,l )| � B

T 2π2
. (36)

Let us now estimate the ∞-norm of the vector G = AH resulting from applying operator
A to a sequence H whose ∞-norm equals 1, so that

|hk,l | � 1, l, k = 0, 1, 2, . . . . (37)

First, we use the second equation in (26) and bound ek,l with l � k (excluding the case
k = l = 0). Taking into account inequalities (34)–(37), one obtains

11
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|ek,l | � B

T 2π2

⎛⎜⎝1 +
∞∑

m=0
m �=l

1

(1 + m2)
+ 8

(l − m)2

⎞⎟⎠
� B

T 2π2

(
1 +

∞∑
m=0

1

(1 + m2)
+ 16

∞∑
m=1

1

m2

)

� B

T 2π2

(
2 + 17

∞∑
m=1

1

m2

)
.

The value of the latter series is well known (see [11], equation 0.233)
∞∑

m=1

1

m2
= π

6
,

resulting in the estimate

|ek,l | � B

T 2π2

12 + 17π2

6
. (38)

The above computations can be replicated with very minor changes to show that (38) holds
also in the cases k = l = 0 and k > l (corresponding to the first and third lines of (26)) which
proves the following.

Lemma 1. Operator A is bounded in the induced ∞-norm by

||A||∞ � B

T 2π2

12 + 17π2

6
.

The lemma implies that if the acquisition time T is large enough, e.g. if

T >
1

π

√
B(12 + 17π2)

6
, (39)

then the operator A is a contraction mapping in the induced ∞-norm, i.e. ||A||∞ < 1. In this
case, the standard theory of contraction mappings applies and one arrives at the following.

Theorem 2. For a sufficiently large acquisition time T (satisfying (39)) the Neumann series (28)
converges in the ∞-norm, implying convergence of iterations (31) and (32) in the following
sense:

sup
k,l=0.1,2,3,...

∣∣ f (K)

k,l − fk,l

∣∣ →
K→∞

0.

Remark. One may want to have an explicit estimate on the constant B in equations (33) and
(39). Such an estimate would depend on function η(t). Although we assumed, for simplicity,
that η(t) is infinitely smooth, the proof of the above theorem requires only relatively slow
decay of |̂η(ξ )|. Therefore, a less smooth function can be used, whose Fourier transform is
easily computed and analyzed. For example, if one chooses η(t) to be equal to cos2(πt/2) for
|t| < 1 and 0 otherwise, then

η̂(ξ ) = π2

√
2π

sin(ξ )

ξ (π + ξ )(π − ξ )
.

Clearly, for ξ � π + 1,∣∣∣∣ sin(ξ )

ξ (π + ξ )(π − ξ )

∣∣∣∣ � 1

ξ (π + ξ )
� 1

ξ 2 + 1
,

12
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so that

|̂η(ξ )| � π2

√
2π

1

ξ 2 + 1
.

Due to the evenness of |̂η(ξ )| the same inequality holds for ξ � −(π + 1). In the interval
|ξ | � π + 1 this inequality also holds, as can be easily verified numerically. Therefore, for the
present choice of η(t), equations (33) and (39) hold with B = π2√

2π
.

2.5. 3D version of the method

In the 3D case, the problem and the proposed algorithm are very similar to their 2D
counterparts. Since the 3D case is both more important for the practical use and more
challenging computationally, we provide in this section a brief outline of the derivation and
convergence analysis of our technique.

The acoustic pressure p(t, x), x = (x1, x2, x3) solves IBVP (5)–(7) in 3D, in a cube
� = [0, 1] × [0, 1] × [0, 1]. As before, the speed of sound c0 will be assumed to equal 1. The
measurements are represented by the triple of time series g = (g1(t, x2), g2(t, x), g3(t, x))

corresponding to the pressure values on the three adjacent sides of the cube �:

g1(t, x2, x3) = p(t, x)|x1=0 , g2(t, x1, x3) = p(t, x)|x2=0 ,

g3(t, x1, x2) = p(t, x)|x3=0 , t ∈ [0, T ].

The solution of IBVP in the cube can be represented using the Neumann Laplacian
eigenfunctions

ϕk,l,n(x) = cos(πkx1) cos(π lx2) cos(πnx3)

with eigenfrequencies

ωk,l,n = π
√

k2 + l2 + n2, k, l, n = 0, 1, 2, . . . .

It has the following form:

p(t, x) =
∞∑

k=0

∞∑
l=0

∞∑
n=0

fk,l,n cos(πkx1) cos(π lx2) cos(πnx3) cos(ωk,l,nt), x ∈ �, t ∈ [0, T ].

Coefficients F = { fk,l,n}∞k,l,n=0 are related to f (x) through the Fourier cosine series,
F = Fseries f . They are computed as follows:

fk,l,n = 1

||ϕk,l,n||22

∫
�

f (x)ϕk,l,n(x) dx, k, l, n = 0, 1, 2, . . . . (40)

Conversely, f is obtained from F by summing the standard 3D cosine Fourier series,
f = F−1

seriesF .
Consider the side of the cube corresponding to x2 = 0. Then

g2(t, x1, x3) ≡ p(t, x)|x2=0

=
∞∑

k=0

∞∑
n=0

cos(πkx1) cos(πnx3)

[ ∞∑
l=0

fk,l,n cos(ωk,l,nt)

]
, t ∈ [0, T ]. (41)

Due to the orthogonality of the products of cosines, the functions in brackets (denote them
g2,k,n) can be easily found from g2 by the 2D cosine Fourier series:

g2,k,n(t) ≡
∞∑

l=0

fk,l,n cos(ωk,l,nt), t ∈ [0, T ], k, n = 0, 1, 2, . . . . (42)

13
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By finding the values of the Fourier transform ĝ2,k,nηT of the product g2,k,n(t)ηT (t) at the
frequencies ωk,l,n one obtains the following infinite system of equations:

fk,l,n + η̂(2Tωk,l,n)

η̂(0)
fk,l,n +

∞∑
m=0
m �=l

η̂(T (ωk,l,n − ωk,m,n)) + η̂(T (ωk,l,n + ωk,m,n))

η̂(0)
fk,m,n

= 2

T

η̂T g2,k,n(ωk,l,n)

η̂(0)
,

for k, l, n = 0, 1, 2, . . . , except the case when k = l = n = 0 which yields a simpler equation

f0,0,0 +
∞∑

m=0
m �=l

η̂(Tω0,m,0)

η̂(0)
f0,m,0 = 1

T

η̂T g2,0,0(ω0,0)

η̂(0)
.

As in the 2D case, for a stable reconstruction we need to use equations from three sides
(equations for the remaining two sides are obtained in a similar fashion). We thus arrive at the
system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0,0,0 +
[∑∞

m=0
m �=l

η̂(Tω0,m,0)

η̂(0)
f0,m,0

]
= f (0)

0,0,0, l = k = n = 0,

fk,l,n +
[

η̂(2Tωk,l,n )

η̂(0)
fk,l,n + ∑∞

m=0
m �=l

η̂(T (ωk,l,n−ωm,l,n))+η̂(T (ωk,l,n+ωm,l,n ))

η̂(0)
fm,l,n

]
= f (0)

k,l,n, k � l, k � n,

fk,l,n +
[

η̂(2Tωk,l,n )

η̂(0)
fk,l,n + ∑∞

m=0
m �=l

η̂(T (ωk,l,n−ωk,m,n))+η̂(T (ωk,l,n+ωk,m,n))

η̂(0)
fk,m,n

]
= f (0)

k,l,n, l > k, l � n,

fk,l,n +
[

η̂(2Tωk,l,n )

η̂(0)
fk,l,n + ∑∞

m=0
m �=l

η̂(T (ωk,l,n−ωk,l,m))+η̂(T (ωk,l,n+ωk,l,m))

η̂(0)
fk,l,m

]
= f (0)

k,l,n, n > l, n > k,

where the right-hand side corresponds to the Fourier coefficients of the crude first
approximation f (0)(x):

f (0)

k,l,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
T

η̂T g2,0,0(ω0,0)

η̂(0)
, l = k = n = 0,

2η̂T g1,l,n(ωk,l,n)

T η̂(0)
, k � l, k � n,

2η̂T g2,k,n(ωk,l,n )

T η̂(0)
, l > k, l � n,

2η̂T g3,k,l (ωk,l,n)

T η̂(0)
, n > l, n > k,

(43)

and where the terms in the brackets define the operator A. Now the system is in the form (27)
and its solution can be found in the form of the Neumann series (29) if the series converges.
Under the latter condition, the solution to the original inverse problem f (x) can be obtained by
the iterative process (31), (32), where the operator R is now defined by (43) and the operator
W maps solutions of the IBVP (5)–(7) in 3D corresponding to the initial condition f (x) into
the values of p(t, x) at the three sides of the cube �.

The convergence analysis is also very similar to that in the 2D case. For example, the
difference |ωk,l,n − ωk,m,n| can be estimated as follows:

|ωk,l,n − ωk,m,n| = π |
√

k2 + l2 + n2 −
√

k2 + m2 + n2| = π
|l − m|(l + m)√

k2 + l2 + n2 + √
k2 + m2 + n2

.

If l � k and l � n and m � l, then

|ωk,l,n − ωk,m,n| � π
|l − m|(l + m)√

3l2 +
√

3m2
� π |l − m|√

3
.

If l � k and l � n and m < l, then

|ωk,l,n − ωk,m,n| � π
|l − m|(l + m)√

3l2 +
√

3l2
� π

|l − m|
2
√

3
.
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The latter estimate therefore holds for all values of m, if l � k and l � n. Proceeding
the same way as in the 2D case one obtains the following estimate on the ∞-norm of the
operator A.

Lemma 3 (3D case). Operator A is bounded in the induced ∞-norm by

||A||∞ � B

T 2π2

12 + 25π2

6
.

This immediately leads to a sufficient condition for the convergence of the 3D algorithm
if the acquisition time T satisfies the condition

T >
1

π

√
B(12 + 25π2)

6
. (44)

Theorem 4 (3D case). For a sufficiently large acquisition time T (satisfying (44)) the Neumann
series (28) converges in the ∞-norm, implying the convergence of iterations (31) and (32) in
the following sense:

sup
k,l,n=0.1,2,3,...

∣∣ f (K)

k,l,n − fk,l,n

∣∣ →
K→∞

0.

3. Numerical implementation and simulations

In this section, the proposed reconstruction algorithm is implemented numerically and tested
in numerical simulations. Since real measurements are made in 3D, we will concentrate on
the 3D version of the method. The 2D algorithm is very similar.

In 3D tomography reconstructions, numerical complexity becomes a major issue, since
in a fine 3D mesh the number of unknowns can easily exceed hundreds of millions. Thus,
it is highly desirable to have an asymptotically fast reconstruction algorithm reconstructing
images on a N × N × N computational grid in (preferably) O(N3) or (at most) O(N3 log N)

flops. Our technique achieves the latter operation count by utilizing the various FFTs on all
computationally intensive steps of the algorithm, as described below.

3.1. Forward problem

We remind the reader that the reconstruction algorithm is defined by equations (31) and (32).
W is one of the operators in (31); it maps the initial condition p(0, x) = f (x) (here f (x) is an
arbitrary function) into values of p(t, x) at the cube faces. In our implementation, computation
for each face is done separately. For example, in order to find g2(t, x1, x3) ≡ p(t, x)|x2=0, the
following steps are done.

(i) Expand f (x) into the 3D Fourier cosine series, obtain coefficients fk,l,n (equation (40)),
k, l, n = 0, 1, 2, . . . , N.

(ii) On a uniform grid in t, compute functions g2,k,n(t), k, n = 0, 1, 2, . . . , N, (equation (42)).
(iii) For each value of t, find g2(t, x1, x3) by summing 2D cosine Fourier series (41).

Let us obtain a crude estimate of the number of operations involved in such a computation.
For simplicity, in all simulations we kept the grid step in time and in space the same. Therefore,
for moderate measurement times T, the number of time nodes is O(N). Step 1 is done by the
3D cosine FFT, it requires O(N3 log N) flops.

Step 2 is slightly more complicated. Evaluation of (42) can be viewed as computing on the
uniform grid the 1D Fourier transform of a function given on a non-uniform grid (frequencies
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ωk,l,n are not equispaced!). This can be done fast by applying the 1D Nonequispaced FFT
(NSFFT, see, for example [8]). This algorithm is not exact (unlike the regular FFT). However,
any needed accuracy can be obtained, at the expense of increased constant factor implicit in the
O(N log N) estimate of the complexity of this technique. In our simulations, the accuracy of
the NSFFT was of the order of 10−5. Since there is N × N of such transforms, the complexity
of step 2 is O(N3 log N) flops.

Step 3 is implemented by summing the 2D cosine series (using the corresponding type of
FFT of size N × N, O(N2 log N) flops each) for each of O(N) time nodes. This step is clearly
done in O(N3 log N) flops.

To summarize, the expense of finding g2(t, x1, x3) by our method is O(N3 log N) flops.
The data for the other faces of the cube are computed in a similar fashion (step 1 is exactly the
same and is performed only once).

We also used this algorithm to compute the simulated measurements g for our experiments.
In some of the simulations, a significant level of noise was added to g to model the measurement
errors and to check the stability of the algorithm to such errors.

3.2. Approximate inversion

The iterations given by equation (31) can be viewed as repeated applications of the forward
operator W and approximate inverse, F−1

seriesR, in alternating order. The summation of the
Fourier series F−1

series is done by the 3D cosine FFT algorithm; it takes O(N3 log N) flops.
Operator R is defined by equations (43); it consists in expanding the data for each face and for
each time sample in the 2D cosine Fourier series (i.e. finding g1,l,n(t), g2,k,n(t) and g3,k,l (t)),
in multiplying these functions by the scaled cut-off function ηT , computing the 1D Fourier
transform of the products at frequencies ωk,l,n and multiplying the results by some constant
factors. Expanding the data in the Fourier series takes O(N) × O(N2 log N) = O(N3 log N)

flops. The only remaining non-trivial operation here is computing the 1D Fourier transforms
η̂T g... of products ηT g... at non-equally spaced frequencies. In our simulation, we simply
applied the regular FFT to compute η̂T g... on a uniform grid, and interpolated using third
degree Lagrange polynomials, to obtain the values at the frequencies ωk,l,n. The computational
expense of this step isO(N3 log N) flops. A more sophisticated approach to finding these values
is to use the proper version of the NSFFT [8]. This would yield more accurate results at the
price of longer computing time, although the complexity would still remain O(N3 log N) flops
for this step. We found, however, that the simple polynomial interpolation described above is
sufficiently accurate for the purposes of the present work.

To summarize, one iteration of the proposed method requires O(N3 log N) flops, i.e. the
algorithm is indeed asymptotically fast. The total number of iterations needed to attain the
convergence was from 1 to 4 in our simulations, so, it is fair to say that the whole technique
is implemented in O(N3 log N) flops.

3.3. Simulations

Performance of the proposed reconstruction algorithm was tested in numerical simulations.
The preliminary results in 2D were reported in [7]. Below we present 3D simulations.

3.3.1. Measurements done on three faces. As a numerical phantom representing the initial
pressure f (x) we used a linear combination of several slightly smoothed characteristic
functions of balls of various radii, similar to the phantom utilized in [22]. The centers of
the balls were chosen to lie on pair-wise intersections of the planes x j = 0.25, j = 1, 2, 3.
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(a) (b) (c)

Figure 2. (a) Phantom, section through the plane x3 = 0.25. (b) Initial approximation f (0)(x),

(c) Second iteration (i.e. f (2)(x)).

Figure 3. A cross-section through the images in figure 2 along the line x2 = 0.25, x3 = 0.25.
The solid line represents the phantom, the dashed line shows f (0)(x) and the gray line represents
f (2)(x).

The cross-section of the phantom by the plane x3 = 0.25 is shown in figures 2(a) and 5(a). (If
needed, additional cross-sections can be found in [22].) The measurement time T in the two
simulations described below was equal to 2, which corresponds to the sound wave covering
the shortest distance between the parallel faces twice. For comparison, the measurement time
in the standard problem of TAT/PAT in 3D free space for a cube of this size would equal

√
3.

The size of the discretization grid was 401 × 401 × 401, i.e. the reconstructed images
contained about 64 million of unknowns. For simplicity the time step was chosen to equal the
spatial step (which was reasonable since the model speed of sound was equal to 1). Therefore,
800 time steps of the forward problem were simulated. In both simulations the data were
‘measured’ on three mutually adjacent faces of the cubical domain.

Slices by the plane x3 = 0.25 of the 3D images reconstructed from accurate data are
shown in figure 2, parts (b) and (c). Part (b) corresponds to the initial approximation f (0); part
(c) represents the second iteration f (2). The gray scale image in part (b) looks quite close to
the slice of the phantom shown in part (a). However, let us look at figure 3 which shows the
profiles of the functions along line x2 = x3 = 0.25. On can see that the first approximation f (0)

(shown by the dashed line) is not quite accurate. On the other hand, the profile corresponding
to the second iteration f (2) (represented by the gray solid line) practically coincides with that
of f (black line).

In order to test the sensitivity of our reconstruction technique to the noise always contained
in real data, we added a strong noise component to the simulated data. The noise was modeled
by a normally distributed random variable; it was scaled so that the noise intensity (as measured
by the standard L2 norm) coincided with the intensity of the unperturbed signal. Figure 4
demonstrates visually the high level of noise in the data; the black line shows exact signal
g1(t, 0.5, 0.5), while the gray line represents the same signal with added noise.
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Figure 4. Illustration of 100% noise: the black line shows the exact signal g1(t, 0.5, 0.5). The gray
line represents the same signal with added noise.

(a) (b) (c)

Figure 5. Simulation with 100% noise in the data. (a) Phantom. (b) Initial approximation f (0)(x).

(c) First iteration f (1)(x).

Figure 6. Cross-section of images in figure 5 along the line x2 = 0.25, x3 = 0.25. The solid line
represents the phantom, the dashed line shows f (0)(x) and the gray line represents f (1)(x).

It should be noted that most tomography modalities tend to amplify noise, and in the
presence of 100% noise either the reconstructed image would be overwhelmed by noise-
related artifacts, or significant blurring would occur due to the low-frequency filtration needed
to regularize the reconstruction. This does not happen here, since the singularities of the
solution p(t, x) do not get smoothed on their way to the detectors due to the properties of
the wave equation. (Such low sensitivity to noise was observed previously [17, 22] in other
inverse problems related to PAT/TAT.)

Figure 5, parts (b) and (c), contains images reconstructed from the noisy data (the initial
approximation, f (0), and the first iteration, f (1), respectively). The noise is almost unnoticeable
in the grayscale images. In addition to the low noise sensitivity of the method, this phenomenon
is partially explained by the nature of the phantom (the volume of the support of f is actually
quite small compared to the volume of the cube).

Figure 6 presents the profiles of the cross-sections by the line x2 = x3 = 0.25. One can
see that a noticeable noise is present in the reconstructions, and that the first iteration (gray
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line) does represent a considerable improvement comparing to the initial approximation f (0).
In our simulation, in the presence of the strong noise the consecutive approximations f ( j),

j = 2, 3, 4, . . . did not show any improvement over f (1); moreover, a very slow growth in the
level of noise was observed.

The computation time in the above simulations was about 9 min per iteration (excluding
the input/output time) on a 2.6 GHz processor of a desktop computer. The code was not highly
optimized, and it ran as a single-thread (no parallelization). Most of the elapsed time (7 min)
was spent computing the forward problem (i.e. W f (K−1)). This is due to a large constant factor
implicit in the operation count of the NUFFT used on this step.

The computing time required by our algorithm is of the same order of magnitude as
that of the fast algorithm for the free-space problem with a cube surface acquisition [19]
(estimated 4 to 5 min on the 401 × 401 × 401 grid). Somewhat faster reconstruction time
(about 1 min for a slightly larger grid) was reported in [21] for a fast algorithm for the free-
space problem involving integrating linear detectors. (The latter two problems are somewhat
simpler computationally; in particular, the algorithms are non-iterative.) It should be noted that
the time reversal algorithm for the free-space problem implemented using finite differences
(with complexity O(N4) flops) would take an estimated time of 3.5 h on a grid of our size,
and methods based on a straightforward discretization of explicit inversion formulas (whose
complexity equals O(N5) flops) would take several days to complete one reconstruction.

3.3.2. Measurements done from all six faces. We have also conducted simulations aimed
at estimating the impact of additional measurements (done on additional faces of the cube).
Clearly, if the data were measured on the other three faces of the cube (corresponding to planes
x j = 1, j = 1, 2, 3), an algorithm very similar to the one described above could be used for
reconstruction. When the data are measured on all six faces, the image is obtained simply by
averaging the results obtained from the two sets of three-face measurements. Our simulations
demonstrate that with the additional data the measurement time T can be decreased. With
measurement time T = 1 and a six-face acquisition the results of reconstruction were quite
similar to those corresponding to the three-face acquisition and T = 2, as described at the
beginning of this section.
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