25,612 research outputs found

    A Stable Marriage Requires Communication

    Full text link
    The Gale-Shapley algorithm for the Stable Marriage Problem is known to take Θ(n2)\Theta(n^2) steps to find a stable marriage in the worst case, but only Θ(nlogn)\Theta(n \log n) steps in the average case (with nn women and nn men). In 1976, Knuth asked whether the worst-case running time can be improved in a model of computation that does not require sequential access to the whole input. A partial negative answer was given by Ng and Hirschberg, who showed that Θ(n2)\Theta(n^2) queries are required in a model that allows certain natural random-access queries to the participants' preferences. A significantly more general - albeit slightly weaker - lower bound follows from Segal's general analysis of communication complexity, namely that Ω(n2)\Omega(n^2) Boolean queries are required in order to find a stable marriage, regardless of the set of allowed Boolean queries. Using a reduction to the communication complexity of the disjointness problem, we give a far simpler, yet significantly more powerful argument showing that Ω(n2)\Omega(n^2) Boolean queries of any type are indeed required for finding a stable - or even an approximately stable - marriage. Notably, unlike Segal's lower bound, our lower bound generalizes also to (A) randomized algorithms, (B) allowing arbitrary separate preprocessing of the women's preferences profile and of the men's preferences profile, (C) several variants of the basic problem, such as whether a given pair is married in every/some stable marriage, and (D) determining whether a proposed marriage is stable or far from stable. In order to analyze "approximately stable" marriages, we introduce the notion of "distance to stability" and provide an efficient algorithm for its computation

    Fast distributed almost stable marriages

    Full text link
    In their seminal work on the Stable Marriage Problem, Gale and Shapley describe an algorithm which finds a stable matching in O(n2)O(n^2) communication rounds. Their algorithm has a natural interpretation as a distributed algorithm where each player is represented by a single processor. In this distributed model, Floreen, Kaski, Polishchuk, and Suomela recently showed that for bounded preference lists, terminating the Gale-Shapley algorithm after a constant number of rounds results in an almost stable matching. In this paper, we describe a new deterministic distributed algorithm which finds an almost stable matching in O(log5n)O(\log^5 n) communication rounds for arbitrary preferences. We also present a faster randomized variant which requires O(log2n)O(\log^2 n) rounds. This run-time can be improved to O(1)O(1) rounds for "almost regular" (and in particular complete) preferences. To our knowledge, these are the first sub-polynomial round distributed algorithms for any variant of the stable marriage problem with unbounded preferences.Comment: Various improvements in version 2: algorithms for general (not just "almost regular") preferences; deterministic variant of the algorithm; streamlined proof of approximation guarante

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

    Full text link
    Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as nn\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlognO(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    Solving Hard Stable Matching Problems Involving Groups of Similar Agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one `exceptional' candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant.Comment: Results on SMTI appear in proceedings of WINE 2018; Section 6 contains work in progres

    Optimal association of mobile users to multi-access edge computing resources

    Get PDF
    Multi-access edge computing (MEC) plays a key role in fifth-generation (5G) networks in bringing cloud functionalities at the edge of the radio access network, in close proximity to mobile users. In this paper we focus on mobile-edge computation offloading, a way to transfer heavy demanding, and latency-critical applications from mobile handsets to close-located MEC servers, in order to reduce latency and/or energy consumption. Our goal is to provide an optimal strategy to associate mobile users to access points (AP) and MEC hosts, while contextually optimizing the allocation of radio and computational resources to each user, with the objective of minimizing the overall user transmit power under latency constraints incorporating both communication and computation times. The overall problem is a mixed-binary problem. To overcome its inherent computational complexity, we propose two alternative strategies: i) a method based on successive convex approximation (SCA) techniques, proven to converge to local optimal solutions; ii) an approach hinging on matching theory, based on formulating the assignment problem as a matching game

    Communication Complexity of Cake Cutting

    Full text link
    We study classic cake-cutting problems, but in discrete models rather than using infinite-precision real values, specifically, focusing on their communication complexity. Using general discrete simulations of classical infinite-precision protocols (Robertson-Webb and moving-knife), we roughly partition the various fair-allocation problems into 3 classes: "easy" (constant number of rounds of logarithmic many bits), "medium" (poly-logarithmic total communication), and "hard". Our main technical result concerns two of the "medium" problems (perfect allocation for 2 players and equitable allocation for any number of players) which we prove are not in the "easy" class. Our main open problem is to separate the "hard" from the "medium" classes.Comment: Added efficient communication protocol for the monotone crossing proble
    corecore