172 research outputs found

    Finding Cycles and Trees in Sublinear Time

    Full text link
    We present sublinear-time (randomized) algorithms for finding simple cycles of length at least k3k\geq 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being CkC_k-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., Ω(1)\Omega(1)-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time \tildeO(\sqrt{N}), where NN denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of NN-vertex graphs can be tested with one-sided error within time complexity \tildeO(\poly(1/\e)\cdot\sqrt{N}). This matches the known Ω(N)\Omega(\sqrt{N}) query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter \e. For any constant k3k\geq3, we extend this result to testing whether the input graph has a simple cycle of length at least kk. On the other hand, for any fixed tree TT, we show that TT-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter \e. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in o(N)o(\sqrt{N}) complexity.Comment: Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided vs Two-Sided Error Probability Updated versio

    A characterization of graph properties testable for general planar graphs with one-sided error (it's all about forbidden subgraphs)

    Get PDF
    The problem of characterizing testable graph properties (properties that can be tested with a number of queries independent of the input size) is a fundamental problem in the area of property testing. While there has been some extensive prior research characterizing testable graph properties in the dense graphs model and we have good understanding of the bounded degree graphs model, no similar characterization has been known for general graphs, with no degree bounds. In this paper we take on this major challenge and consider the problem of characterizing all testable graph properties in general planar graphs. We consider the model in which a general planar graph can be accessed by the random neighbor oracle that allows access to any given vertex and access to a random neighbor of a given vertex. We show that, informally, a graph property P is testable with one-sided error for general planar graphs if and only if testing P can be reduced to testing for a finite family of finite forbidden subgraphs. While our presentation focuses on planar graphs, our approach extends easily to general minor-free graphs. Our analysis of the necessary condition relies on a recent construction of canonical testers in the random neighbor oracle model that is applied here to the one-sided error model for testing in planar graphs. The sufficient condition in the characterization reduces the problem to the task of testing H-freeness in planar graphs, and is the main and most challenging technical contribution of the paper: we show that for planar graphs (with arbitrary degrees), the property of being H-free is testable with one-sided error for every finite graph H, in the random neighbor oracle model

    A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

    Full text link
    We consider one-sided error property testing of F\mathcal{F}-minor freeness in bounded-degree graphs for any finite family of graphs F\mathcal{F} that contains a minor of K2,kK_{2,k}, the kk-circus graph, or the (k×2)(k\times 2)-grid for any kNk\in\mathbb{N}. This includes, for instance, testing whether a graph is outerplanar or a cactus graph. The query complexity of our algorithm in terms of the number of vertices in the graph, nn, is O~(n2/3/ϵ5)\tilde{O}(n^{2/3} / \epsilon^5). Czumaj et~al.\ showed that cycle-freeness and CkC_k-minor freeness can be tested with query complexity O~(n)\tilde{O}(\sqrt{n}) by using random walks, and that testing HH-minor freeness for any HH that contains a cycles requires Ω(n)\Omega(\sqrt{n}) queries. In contrast to these results, we analyze the structure of the graph and show that either we can find a subgraph of sublinear size that includes the forbidden minor HH, or we can find a pair of disjoint subsets of vertices whose edge-cut is large, which induces an HH-minor.Comment: extended to testing outerplanarity, full version of ICALP pape

    Testing bounded arboricity

    Full text link
    In this paper we consider the problem of testing whether a graph has bounded arboricity. The family of graphs with bounded arboricity includes, among others, bounded-degree graphs, all minor-closed graph classes (e.g. planar graphs, graphs with bounded treewidth) and randomly generated preferential attachment graphs. Graphs with bounded arboricity have been studied extensively in the past, in particular since for many problems they allow for much more efficient algorithms and/or better approximation ratios. We present a tolerant tester in the sparse-graphs model. The sparse-graphs model allows access to degree queries and neighbor queries, and the distance is defined with respect to the actual number of edges. More specifically, our algorithm distinguishes between graphs that are ϵ\epsilon-close to having arboricity α\alpha and graphs that cϵc \cdot \epsilon-far from having arboricity 3α3\alpha, where cc is an absolute small constant. The query complexity and running time of the algorithm are O~(nmlog(1/ϵ)ϵ+nαm(1ϵ)O(log(1/ϵ)))\tilde{O}\left(\frac{n}{\sqrt{m}}\cdot \frac{\log(1/\epsilon)}{\epsilon} + \frac{n\cdot \alpha}{m} \cdot \left(\frac{1}{\epsilon}\right)^{O(\log(1/\epsilon))}\right) where nn denotes the number of vertices and mm denotes the number of edges. In terms of the dependence on nn and mm this bound is optimal up to poly-logarithmic factors since Ω(n/m)\Omega(n/\sqrt{m}) queries are necessary (and α=O(m))\alpha = O(\sqrt{m})). We leave it as an open question whether the dependence on 1/ϵ1/\epsilon can be improved from quasi-polynomial to polynomial. Our techniques include an efficient local simulation for approximating the outcome of a global (almost) forest-decomposition algorithm as well as a tailored procedure of edge sampling

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur
    corecore