2,770 research outputs found

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1a2...ama_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    Space bounds for processing contentless inputs

    Get PDF
    The space and time bounds of Turing machines which process contentless inputs, i.e., inputs of the form an are investigated. There is such a Turing machine which uses space bounded by log log n but not space bounded by any constant. Properties of this processor are given. The general properties of Turing machines processing contentless inputs are discussed. Any nontrivial processor can be transformed into a recognizer of a nonregular language in the same input alphabet and using exactly the same space. Finally, a theorem which establishes a hierarchy of contentless languages whose recognizers require at least log n space is given

    Remarks on separating words

    Get PDF
    The separating words problem asks for the size of the smallest DFA needed to distinguish between two words of length <= n (by accepting one and rejecting the other). In this paper we survey what is known and unknown about the problem, consider some variations, and prove several new results

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa
    corecore