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The space and time bounds of Turing machines which process contentless inputs, 
i.e., inputs of the form a" are investigated. There is such a Turing machine which uses 
space bounded by log log n but not space bounded by any constant. Properties of this 
processor are given. The general properties of Turing machines processing contentless 
inputs are discussed. Any nontrivial processor can be transformed into a recognizer 
of a nonregular language in the same input alphabet and using exactly the same space. 
Finally, a theorem which establishes a hierarchy of contentless languages whose 
recognizers require at least log n space is given. 

INTRODUCTION 

We investigate the space requirements of Tur ing  machines and in part icular  
those that have their inputs restricted to a single letter alphabet, that is, those that 
process contentless inputs. Such machines have a read only input  with end markers 
and an infinite storage tape. We only consider machines that eventually halt on every 
input  and the read head is allowed to move in two directions. A set of strings in a 
single letter alphabet  is called a contentless language. Stearns, Hartmanis,  and Lewis 
[5] show that  any Tur ing  machine using unbounded space must  use log log n space 
for infinitely many n. Lewis, Stearns, and Hartmanis  [4] exhibit  a nonregular set 
that can be recognized by a Tur ing  machine in space bounded by log log n, namely 
the set C = {cwxc "" cwkc: N(wi)  = i for I ~ i ~ k}, where N(w) is the integer 
represented by the binary string w ~ 1{0, 1)*. The  recognition of C by a log log n 
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space bounded machine seems to depend heavily on the "content" of the words 
being processed. This research was originally motivated by the question of whether 
or not there is a nonregular contentless language that can be recognized by a log log n 
space bounded Turing machine. 

In Section 1 we exhibit a Turing machine processor of contentless inputs that 
uses space bounded by log log n but not bounded by any constant. The processor 
can be transformed into a log log n space bounded recognizer of a nonregular con- 
tentless language. We notice that the time used by the machine is bounded above 
by n log n/log log n and that the processor realizes this bound on infinitely many 
inputs. The Turing machine must use bounded space on certain infinite sets of the 
inputs; in fact, any set of inputs for which the machine does not use bounded space 
on an infinite subset must itself be very sparse. 

In Section 2 we discuss, among other things, the time required by space bounded 
Turing machines processing contentless inputs. We show that an s(n) space bounded 
machine that uses unbounded space must use n log n/s(n) time for infinitely many n. 
We use techniques developed by Lewis, Stearns, and Hartmanis [4]. 

In Section 3 we first show that any Turing machine processing contentless inputs 
that uses unbounded space can be transformed into a recognizer of a nonregular 
contentless language without changing the space used. Second, we show that if 
r(n) and s(n) are exactly the spaces used, respectively, by two Turing machines 
processing contentless inputs with r ( n ) ~  log n and lim infn(r(n)/s(n)) ---- O, then 
there is a contentless language which can be recognized in s(n) space but not in r(n) 
space. This result parallels a similar result of Stearns, Hartmanis, and Lewis [5] 
but is not directly implied by their theorem because they appeal to languages with 
content. 

The reader may consult Hopcroft and Ullman [3, Chap. 10] for the basic definitions 
of off-line and on-line tape bounded Turing machines. All our Turing machines 
are off-line unless otherwise specified. We fix r and $ as the left and right end markers, 
respectively. Let T be any Turing machine (with arbitrary input alphabet). Define 
st(n) to be the maximum number of storage tape cells scanned by T on an input 
of length n. Further, tr(n) is the maximum number of steps made by T on an input 
of length n. Also, define mr(n) to be the maximum number of times that the input 
head leaves an end marker and proceeds to the other end marker, without returning 
to the first end marker in the interim, on an input of length n. A function s is tape 
constructable if there is a Turing machine T such that s(n) = st(n) for all n. A function 
s is uniformly tape constructable if there is a Turing machine T processing contentless 
inputs such that s(n) -~ st(n) for all n. I t  follows that a function s is uniformly tape 
constructable if and only if there is a Turing machine T such that T uses exactly 
s(n) space on every input of length n. 

I f  a(n) is a sequence of real numbers, then lira supn a(n) and lim inf~ a(n) have 
their standard meanings. 
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We say that a Turing machine 21' uses unbounded space if lim SUpn st(n) = oo 
and uses space bounded by s(n) if lira inf,(s(n)/sr(n)) > 0. A language can be recognized 
in space s(n) if there is a Turing machine T which uses space bounded by s(n) and 
recognizes L. A language requires space s(n) if, whenever 7' recognizes the language, 
lim sup,(sr(n)/s(n)) > 0. The meaning is clear should we add the adverb "on-line" 
in the appropriate places or replace "space" by "time" in the above definitions. 

We assume that all logarithms are base 2 unless otherwise specified. Finally, for 
real number x, integers a and b, and string w ~ ~'*, we define Ix], Ix], a ] b, a 4" b, 
[ w : to be the greatest integer ~x ,  the least integer />x, a divides b, a does not 
divide b, and the length of w (number of symbols in the string w), respectively. 

1. LOG LOG n SPACE BOUNDED CONTENTLESS PROCESSORS 

We describe a Turing machine T 1 with one storage tape which processes inputs 
of the form a n and whose properties are presented in the theorems below. The  Turing 
machine T 1 finds the first prime number p which does not divide n on input a ". 
The action of I"1 is as follows. First, the number 2 is written in binary on the storage 
tape. Then the head is made to scan the entire input, a n, from left to right to determine 
whether or not 2 I n. I f  2 4" n the machine halts. I f  2 I n the number 3 replaces 2 on 
the storage tape (3 is the next prime number). In general, if a prime p has just been 
calculated and written in binary on the storage tape, T 1 then checks the input to 
see whether or not p [ n. I f  p ,~ n, 7"1 halts. I f  p .  n, the next larger prime is calculated 
and written in binary on the storage tape, replacing p. More particularly, we want 
the read head of T~ to behave as follows. It  should remain unmoving on either the 
r or $ while the calculation of the next higher prime p is being made. Computing 
whether or not a binary string is a prime can be done in space equal to the length 
of the binary string. Then, in checking whether or not p i n, we want the read head 
to scan the input a n, reaching the opposite end marker in exactly n + 1 machine 
moves (i.e., in time n W 1). This will involve the use of a "real time counter of countp ."  
Such a device will allow 7"1 to "count off" p consecutive moves of the machine and, 
by repeating the process, to determine whether or not p i n  in n + 1 machine 
moves. 

The heart of a real time counter of count p is a subroutine called pseudocounter 
described as follows. The  tape contains initially 0BOFl~176 E with the head on 0 B. 
The head makes repeated cycles over the string of length [log p]. Each cycle consists 
of 2[log p] moves, the head traversing from 0 B to 0 E, then back to 0 B. On each such 
cycle the current binary string of length [log p] is changed to the next string in 

E lexicographical order. To  be specific, if the cycle begins with crlBa 2 "'" ~Flog ~l on the 
tape, then on the left to right pass each leading 1 is changed to a 0, and the first 0 
is changed to a 1. Nothing else is changed during the remainder of the cycle. The  



SPACE BOUNDS 121 

pseudocount p is what remains on the tape after exactly p moves of the pseudocounter 
together with an indication of the head position and direction, and whether the 
head is among the leading l 's  or the first 0. Also, if the pseudocounter has finished 
making changes, then the first 1 is marked. So the pseudocount looks like olBa2 --- 
a~' --' ajx ... aFloge ~l ' where j indicates the head position, ai' is the first I, and X is a 
two-bit binary string, the first bit indicating the head direction and the second bit 
indicating whether or not the head is among the leading l 's  or first 0. An important 
feature of the pseudocounter is that it can be run in reverse. Given a pseudocount p 
with the head positioned on the letter marked with a binary bit string, the process 
of pseudo-counting can be run in reverse so that after exactly p moves the tape 
consists of 0~0 r]~ with the head on 0 s. The changes in the reverse process 
are made as the head moves from right to left. The last 1 (reading right to left) is 
changed to a 0 and the remaining O's are changed to l's. Of course, the last 1 reading 
right to left is the first one reading left to right, so that it can be marked on each 
left to right pass in order to be located on the return trip. 

A real time counter of count p consists of a tape of length [logp] with three tracks. 
The first track contains p written in binary. By simulating a pseudocounter construct 
the pseudocount of count p on track 2. Track 3 acts now as a pseudocounter and 
reverse pseudocounter which successively counts up to p, then down to zero. As 
the pseudocounter is running, a comparison of tracks 2 and 3 can be made (without 
time loss) to detect when track 3 has attained the pseudocount p. Likewise, as the 
reverse pseudocounter is running, it can detect (without time loss) whether the count 
is 0. Each time the pseudocount on track 3 reaches 0 or p a signal is sent indicating 
that exactly p moves have been made since the last signal. 

Now it is clear that p ]  n can be checked in n + 1 moves. Notice that the con- 
struction of the real time counter of count p uses no more space than the number p 
written in binary. Finally, we note that T~ halts on every input a" since there is a p 
such that p ~" n, and, since all the storage tape calculations are done in space [log q~], 
where q,  is the first prime not dividing n, that Sra(n) = [log q,]. 

THEORr.X~ 1. The Turing machine T 1 uses unbounded space and space bounded by 
log log n. 

Proof. To show that T1 uses unbounded space, it suffices to take nq == I-I~q P, 
where q is a prime. Then  Sr,(no) = [log q] and so lira sup st(n) = oo. 

To show that T1 uses space bounded by log log n we notice, since each prime 
P < qn divides n, that l-L<q, p i n  so that I-L<q. P ~< n. Taking In (-~ log,) of this 
inequality we get Y~<% In p ~ In n ~< c log n for some constant c > 0. The  well- 
known result of Tchebycheff (1850), namely, that there exist positive constants 
a and b such that ax ~ Y~.<~ Inp  ~ bx (see [1, Theorem 414]) implies that qn 
( 1 / a ) ~ < q ,  lnp.  Hence q~ ~ (c/a) log n whence lim inf~ (log log n/sr~(n)) > O. | 
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COROLLARY. There exists a nonregular subset of {a ~ I n ~ 1} which can be recognized 
in space bounded by log log n. 

Proof. This result is implied by Theorem 5 below in view of Theorem 1, but  
we give here an independent  proof by actually exhibit ing a nonregular set satisfying 
the requirements. 

Let  B = {a~: q, ~=-: I (rood 4)}. Now B can be recognized in space bounded by 
log log n by slightly modifying the machine T 1 to check, after q~ is found, whether 
or not q~ ~ 1 (mod 4) (which does not require any additional storage space), and 
accepting a ~ if q~ -- 1 (mod 4) and rejecting otherwise. 

We have to show that B is nonregular. Suppose that B is regular. Then  there 
is an integer b, residues r l ,  r 2 .... , r k (rood b) (0 ~ r~ < b), and two finite sets F,  D 
such that 

B - [(a": n - -  r 1 (mod b)) ~3 ."  u (a": n =: rk (mod b)} t j F ]  - -  D. 

Let  ~ be the greatest number  such that for some prime p, p~ divides b. Consider 
the infinitely many numbers of the form m~ = 1-l~<qp ~ where q ~: 1 (mod 4), 
q 3> max{ x : x e F U D U { a b ) }  and b divides mq. Each m ~ B  and therefore 
m q ~ r i ( m o d b )  for some r~. Hence r ~ - ~ 0  for some i. Hence j b E B  for all 
sufficiently large j .  But this is a contradiction since we may take j = I-L<qP where 
q is a sufficiently large prime and q ~ 3 (mod 4). II 

We next prove an upper bound for the time function trt(n) of the machine T 1 . 
As will be indicated in Theorem 4 below, this bound is minimal. 

THEOREM 2. T x uses time bounded by n log n/log log n. 

Proof. The  Tur ing  machine T 1 operates as follows. The  read head sits on r 
or $ until it is ready to traverse the input  in n + 1 moves. The  number  of traverses 
is clearly ~r(q,) where q, is the first prime not dividing n and rr(x) is the number  
of primes not exceeding x. Since the space is bounded by log log n, by elementary 
considerations we can show that, to avoid T 1 looping, there is an r > 0 such that 
no more than (log n) ~ machine moves are possible while the read head remains 
stationary. Hence there is a constant c 3> 0 such that the total t ime used in processing 
the input  a '~ is 

trl(n) ~ (n + 1 + (log n ) ' ) -  7r(q,) 4- (log n)" ~ cnrr(q,). 

By the well-known result [I,  Theorem 7], there are positive constants a and b 
such that an/logn ~ r bn/logn. By the argument in Theorem 1 there 
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is a constant d > 0 such that qn ~< d log n. Since x/log x is increasing for x > 1, then 

~r(q.) ~ bq./log q. .~ bd log n/log(d log n). 

Whence lira inf.[(n log n/log log n)/sr~(n)] > O. | 

We observe that sty(n) = 2 for any odd number  n and in general sq(n) = [log q| 
for any number  of the form m'l- lv<qP (q prime, q ~" m). Hence sq(n) is bounded 
on infinite sets, and this will be the case for any Turing machine T with a single 
letter input alphabet and lim sup.(sr(n)/log n) = 0 (Theorem 4(i) below). For 7"1 
we have the stronger result which follows. 

Ttmo~r.~a 3. I f  [ni} is a sequence of integers such that limi Srl(n, ) = 0% then 
limt(i/ni) := 0. 

Proof. I f  sr1(n ) > K, then, letting PK be the largest prime with [1OgpK ] ~ K,  
we have I-lv<vxpln. Hence for all but finitely many of the ni we have n,-----0 
(rood yIv<~v x p) so that lira supi(i/ni) <~. I/1--L,<.~, K p. But the right-hand side becomes 
arbitrarily small as K approaches oo. II 

We conjecture that Theorem 3 holds for any contentless processor T with 
lira sup,(sr(n)/log n) = O. 

T o  conclude the section, we remark that we do not know of any contentless language 
which is recognizable in space s(n) where lim sup,(s(n)/log n) == 0 but  also requires 
space s'(n) where liminf~(loglogn/s'(n))=: 0. A candidate follows. {a~:p ~--l 
(mod 4), where p is the smallest prime such that pv.~ n). This set is nonregular. 
I f  we construct a Turing machine T 2 in imitation of T a writing pv in binary on the 
storage tape the space used is Sr2(n ) -~ [pn logpn], wbere Pn is the smallest prime 
such that p~- ~" n. Using techniques like those of Theorem 1 and the result that there 
exist positive constants a and b such that an 2 ~ ~v<-,,P logp  ~ bn 2, we can show 
that there exist c > 0 such that sr~(n) ~ c(log log n)(log n) 1/2 and also 

l iminf(log log nisEi(n)) --= O. 

2. TIME AND OTIIER CONSIDERATIONS 

Stearns, Hartmanis,  and Lewis [5] have shown that any Turing machine using 
unbounded space processing on-line requires space s(n), where lira inf,(s(n)/log n) > O. 
This might lead one to suspect that a Tur ing machine processing contentless inputs, 
using unbounded space and space s(n), where lira sup~(s(n)/log n) == 0, must make 
many "passes" over the input. This  suspicion is verified by the following. 
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THEOREM 4. Let I" be a luring machine processing contentless inputs such that T 
uses unbounded space and lira sup,(sr(n)/log n) ~= O. 

(i) lim infn sr(n) < oo, 

(ii) lim sup,(sr(n ) mr(n)/log n) > O, 

(iii) lim sup,(sr(n) tr(n)/n log n) > 0. 

Proof. Let T be given with, say, k storage tapes, q states, and r storage tape 
symbols. Define p(n) = q(sr(n)) ~ r~'sr (n). The  number  p(n) represents the maximum 
number  of storage states that can be achieved by T on the input of  length n. A storage 
state of T is a triple (v, h, y), where v is a state, h is a k-dimensional vector of positive 
integers (representing the k head positions on the k storage tapes) and ~ is a k-dimen- 
sional vector of strings from the storage tape alphabet (representing the contents 
of the k storage tapes). (i) Since lim sup,(sr(n)/log n) = O, then there exists an m 
such that p(m) <~ m. Hence on every pass across the entire input of length m by 
the read head the machine T must enter the same storage state at least twice. We 
must have st(m) = sr(m ~-jm!) for all j >~ 0. (See Lewis, Stearns, and Hartmanis 
[4] for elaboration.) (ii) Let n~ be the least number  such that sr(ni) ~ i. Such a number  
exists for each i because T uses unbounded space. Let/1,12 ,..., l , . ,  where m = mr(nl), 
be such that l~ represents the shortest length of input on which T passes twice through 
the same storage state on the j th  pass over the entire input. Each l~- is ~p(n~). Hence, 
if (p(n~)),,r~,,,) < n~, then a string of length I-L-"~I lj can be removed from the original 
input of length ni to form a new input of shorter length on which T uses the same 
amount of space. This  is impossible. We conclude that ni ~ (p(ni)) mr('~), that is, 
n~ ~ [q(sr(ni))~rk~r(n,)] mr~",~. There  is a constant c > 0 such that log n~ <~ Csr(ni) mr(n~). 
Hence lira sup,,(sr(n) mr(n)/log n) > 0. (iii) Since each pass over the input of length 
ni takes at least ni moves then ni log ni <~ Csr(ni) tr(n;). We have 

l imsup(sr(n) tr(n)/n log n) > 0. | 

Theorem 4(iii) implies that any Turing machine T processing eontentless inputs, 
using unbounded space and space bounded by log log n, satisfies 

limsup[tr(n)/(n log n/log log n)] > 0. 

In  other words, 7' requires n log n/log log n time for infinitely many n. This  implies 
that the process / '1  described in Section 1 is optimal in the sense that no other process 
on eontentless inputs, using unbounded space and space Ioglog n, can run any 
faster than T 1 . 

Using the example of a log log n recognizer of C (see Introduction), we see that 
there is a Tur ing machine T and positive constants a and b such that a log log n 
sr(n) ~ b log log n. By Theorem 4(i), st(n) cannot be uniformly tape eonstructable. 
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Hence not every function that is tape constructable is uniformly so. I t  would be 
interesting to know whether or not every tape constructable function s with 
lira infn(s(n)/log n) > 0 is uniformly tape constructable. I t  may be of some help to 
know that every uniformly tape constructable function s with lira infn(s(n)/log n) > 0 
is uniformly tape constructable by an on-line Tur ing machine processing contentless 
inputs. This  is accomplished by using a binary counter track on the storage tape 
to simulate the position of the read head. 

3. DIAGONAL CONSTRUCTIONS 

We begin by showing that  every Tur ing  machine processing contentless inputs 
and using unbounded space can be transformed into another that uses the same 
space exactly and recognizes a nonregular contentless language. 

TtlEORE.~f 5. I f  S is uniformly tape constructable and unbounded then there exists 
a Turing machine U recognizing a nonregular contentless language with s U = s. 

Proof. L e t  T be a Tur ing  machine with input  alphabet {a} and with s T = s. 
I t  is possible to obtain a uniform method of describing all deterministic finite state 
automata as strings in the alphabet {0, 1}. I f  d ~ {0, 1)*, then it is possible in [ d [ 
space to check whether d is a well-formed description of a finite state automaton. 
I f  d is well formed and written on a track of the storage tape, then the simulation 
of the automaton described by d on the input  can be done in just  the space where d is 
written. Let  d i be the ith member  of{0, 1}* in the natural ordering (A, 0, 1,00, 01,...). 
We construct U in such a way that U uses exactly sr(n ) space and for each i there 
is a number  n such that d i is writ ten on the storage tape on input  a '~, d i is checked 
to see if it is well formed, and if it is, d i is simulated on a n with U accepting a n if 

and only if d i rejects a ~. 
We give a brief description of U. Each variable used can be stored on a track of 

the storage tape. Let  n be arbitrary. On input  a n, 

1. Simulate T in order to construct ST(n ) space. Set p = 0, m = 0, k = st(O), 

d = d o . 

2. Set p =- p ~ 1. I f  p ~ rain{st(n), n - -  l} and sT(p) < Sr(n ) then go to 3. 
Otherwise, see if d is well formed. I f  not, reject. I f  so, simulate d on input  a n, and 
accept if and only if d rejects the input. 

3. I f  ST(p) > k and sT(p) ~ m then set m = p, k = ST(])), and d = d i +  1 if d 
is currently d~. Go to 2. 

I t  is not difficult to see that this procedure can be done in space sT(n ). 
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The  result is verified if we can show that for all i, d~ is realized as the final description 
writ ten on some input. Define n o ~- 0 and ni+l = the least n > n~ such that sr(n) > 
sr(n~) and st(n) >~ n~. On input  a n, we may show by induction that m steps through 
the values no, n~, n 2 ,..., n~_~ exactly. Hence the final value of d is di on input  a ~,. 

We now show that there is a fine hierarchy of tape complexity classes of contentless 
languages above log n. 

THEORE~ 6. I f  r ands are uniformly tape constructable with l im inf~(r(n)/log n) > 0 
and lira inf,,(r(n)/s(n)) = O, then there is a Turing machine U recognizing a contentless 
language L such that s U = s and L cannot be recognized in space r(n). 

Proof. Let  T and R be Tur ing  machines with input  alphabet {a} that construct 
s and r, respectively. The  proof  is similar to the proof  of Theorem 5 except that 
we must  contend with possible looping and with the fact that the simulation of an 
arbitrary storage tape alphabet  by a single storage tape alphabet introduces a constant 
factor. Let  di be as before except that dl may be a well-formed description of a Tur ing  
machine with input  alphabet {r $, a} and tape alphabet {0, 1, B} (see Hopcroft  and 
Ul lman [3]). Let  ei be the ith member  of the sequence do, do, d l ,  do, dx, dz ,... �9 
Using two tracks it is not difficult to generate e~ in space bounded by max{[ e~ [: 
O ~ j < ~ i } .  

The  Tur ing  machine U can be described as follows. On input an: 

1. Simulate T in  order to construct sr(n ) space. S e t p :  : 0, m -~ 0, k = [sr(O)/s•(O)] , 
e~---e 0 . 

2. Set p = p  + 1. I f  p <~ min{[sr(n)/sR(n)], n - -  I} and [Sr(p)/sR(p) J < 
[sr(n)/sR(n)] then go to 3. Otherwise see if e is a well formed description. I f  not, reject. 
I f  so, simulate e on the input  for no more than 2 st(n) moves with a universal simulator 
(using a binary counter track) and without letting the space used exceed sr(n ). Accept 
the input unless the simulation halts in an accepting state, in which case reject. 

3. I f  [sr(p)/sR(p) ] > k and [Sr(p)/sR(p) ] >~ m then set m = p, k ---- [sr(p)/SR(p)], 
and e == el+ t if e is currently e~. Go to 2. 

I t  is not difficult to show that sv = s t .  L e t L  be the contentless language recognized 
by U. Suppose that L is also recognized by a Tur ing  machine V in space bounded 
by r(n). This  will prove to be impossible. There  is a description d ~ {0, 1}* and a 
constant c > 0 (depending on V) of a Tur ing  machine with tape alphabet {0, 1, B} 
that recognizes L in space bounded by cr(n). 

Define n o = 0 and ni+l = the least n 7> ni such that [s(n)/r(n)] > [s(n,)/r(ni)] and 
[s(n)/r(n)] ~ n, .  Such an infinite sequence exists because lira infn(r(n)/s(n)) =~ O. As 
in Theorem 5 we can show that on input a '~ the final value of e is e i .  Since 



SPACE BOUNDS 127 

limi(r(ni)/s(ni)) = O, d occurs infinitely often as an ei, and lim infn(r(n)/log n) 3> O, then 
there must be an i such that 

(i) d =--ei, 

(ii) s(ni) > cr(n~), 

(iii) 2 ~~ > niqcr(n~) 3 ~r~",~, 

where q is the number of states represented in d. On input a n,, U eventually success- 
fully simulates d. Hence U accepts am if and only if V rejects a% This is impossible 
since both U and V presumably recognize L. | 

Let X be a fixed finite alphabet. A function s is said to be N-tape constructable 
if there is a Turing machine T processing inputs in the alphabet X such that Sr := s. 
A X-language is simply a subset of 27*. The  two theorems of this section can be 
proved in an identical way for X-tape constructable functions and Z-languages. 

Stearns, Hartmanis, and Lewis [5] show that if s is tape constructable then 
there is a language L recognizable in space s(n), but if r is any function with 
lim inf ,(r(n)/log n ) >  0 and lim i n f , ( r (n ) / s (n ) )=  0, then L is not recognizable in 
space r(n). To obtain such a strong result they define the alphabet of L by subscripting 
the input alphabet of the Turing machine T that constructs s. A word of length n 
in the alphabet of L encodes a word of length n in the input alphabet of T and some 
Turing machine description. Words in the alphabet of L have much "content ."  
We do not know whether or not it is necessary to obtain their result that the alphabet 
of L be larger than the input alphabet of T. However, using techniques like those of 
this section we can show that if s is N-tape constructable then there is a N-language L 
recognizable in space s(n) but not in space r(n) if lira infn(r(n)/log n)3> 0 and 
lim inf,(r(n)/s(n)) --  O. 

Hopcroft and Ullman [2] have shown that an infinite hierarchy of space complexity 
classes exists even below log n. Again their proof relies heavily on the fact that words 
are allowed content. We do not even know whether or not every contentless language 
recognizable in space s with lim sup~(s(n)/log n) = 0 is not already recognizable in 
space log log n. 

Note Added in Proof. Hartmanis and Berman have recently shown that there is an infinite 
hierarchy of space complexity classes of contenttess languages even below log n. 

BIBLIOGRAPHY 

1. G. H. HARDY AND E. M. Wmorrr, "An Introduction to the Theory of Numbers," Oxford 
Press, 1960. 

2. J. E. ItOPCROFr AND J. D. ULLStAN, Some results on tape-bounded Turing machines, 
J. Assoc. Comput. Much. 16 (1967), 168-177. 

571/11/I-9 



128 FREEDMAN AND LADNER 

3. J. E. HOPCROFT AND J. D. ULLMAN, "Formal  Languages and Their  Relation to Automata," 
Addison-Wesley, Reading, Mass., 1969. 

4. P. M. LEWIS II, R. E. STEARNS, AND J. HKRTMANIS, Memory bounds for recognition of context 
free and context sensitive languages, in " IEEE Conf. Record on Switching Circuit Theory 
and Logical Design," 1965, pp. 191-202. 

5. R. E. STEARNS, J. HARTMANIS, AND P. M. LEWIS II ,  Hierarchies of memory limited com- 
putations, " IEEE Conf. Record on Switching Circuit Theory and Logical Design," 1965, 
pp. 179-190. 


