1,663 research outputs found

    On Synchronous and Asynchronous Monitor Instrumentation for Actor-based systems

    Full text link
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315

    On synchronous and asynchronous monitor instrumentation for actor-based systems

    Get PDF
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.peer-reviewe

    Improving Runtime Overheads for detectEr

    Full text link
    We design monitor optimisations for detectEr, a runtime-verification tool synthesising systems of concurrent monitors from correctness properties for Erlang programs. We implement these optimisations as part of the existing tool and show that they yield considerably lower runtime overheads when compared to the unoptimised monitor synthesis.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Synthesising correct concurrent runtime monitors

    Get PDF
    This paper studies the correctness of automated synthesis for concurrent monitors. We adapt a subset of the Hennessy-Milner logic with recursion (a reformulation of the modal μ-calculus) to specify safety properties for Erlang programs. We also define an automated translation from formulas in this sub-logic to concurrent Erlang monitors that detect formula violations at runtime. Subsequently, we formalise a novel definition for monitor correctness that incorporates monitor behaviour when instrumented with the program being monitored. Finally, we devise a sound technique that allows us to prove monitor correctness in stages; this technique is used to prove the correctness of our automated monitor synthesis.peer-reviewe

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Improving runtime overheads for detectEr

    Get PDF
    We design monitor optimisations for detectEr, a runtime-verification tool synthesising systems of concurrent monitors from correctness properties for Erlang programs. We implement these optimisations as part of the existing tool and show that they yield considerably lower runtime overheads when compared to the unoptimised monitor synthesis.peer-reviewe

    Runtime verification using Valour

    Get PDF
    In this paper we give an overview of Valour, a runtime verification tool which has been developed in the context of a project to act as a backend verification tool for financial transaction software. A Valour script is written by the user and is then compiled into a verification system. Although, developed as part of a project, the tool has been designed as a stand-alone general-purpose verification engine with a particular emphasis on event consumption. The strong points of Valour when compared to other runtime verification tools is its focus on scalability and robustness.peer-reviewe

    Control and systems software for the Cosmology Large Angular Scale Surveyor (CLASS)

    Full text link
    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Chile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observations, monitor the status of the instruments and observations, create archival data packages, and transfer data packages to North America for analysis. The computer and network architecture of the CLASS observing site is also briefly discussed. This software and architecture has been in use since 2016, operating the telescopes day and night throughout the year, and has proven successful in fulfilling its design goals.Comment: 19 pages, 8 figures, to appear in Proc. SPI
    • …
    corecore