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1 Introduction

Runtime Verification (RV), is a lightweight verification technique that may be used to de-
termine whether the current system run respects a correctness property. Two requirements
are crucial for the adoption of this technique. First, runtime monitor overheads need to be
kept to a minimum so as not to degrade system performance. Second, instrumented mon-
itors need to form part of the trusted computing base of the verification setup by adhering
to an agreed notion of monitor correctness; amongst other things, this normally includes a
guarantee that runtime checking corresponds (in some sense) to the property being checked
for. Monitor overheads and correctness are occasionally conflicting concerns. For instance,
in order to lower monitoring overheads, engineers increasingly use concurrent monitors [16,
29,35] so as to benefit from the underlying parallel and distributed architectures. However
concurrent monitors are also more susceptible to elusive errors such as non-deterministic
behaviour, deadlocks or livelocks which may, in turn, affect their correctness.

Ensuring monitor correctness is, in general, non-trivial. One prominent obstacle is the
fact that system properties are typically specified using one formalism, e.g., a high-level
logic, whereas the respective monitors that check these properties are described using an-
other formalism, e.g., a programming language. This, in turn, makes it hard to ascertain the
semantic correspondence between the two descriptions. Automated monitor synthesis can
mitigate this problem by standardising the translation from the property logic to the monitor
formalism. It also gives more scope for a formal treatment of monitor correctness.

In this work, we investigate the correctness of synthesised monitors in a concurrent set-
ting, whereby (i) the system being verified executes concurrently with the synthesised mon-
itor (ii) the system and the monitor themselves consist of concurrent sub-components. The
correctness of monitor synthesis has been studied previously by the seminal work of Geilen,
[23], and (more formally) by subsequent work such as that of Sen et al., [34], and Bauer
et al., [5]. Our approach differs from these studies in a number of respects. First, the afore-
mentioned work abstracts away from the internal working of a system, representing it as a
string of events/states (execution trace); this complicates reasoning about how monitors are
instrumented wrt. an executing system. It also focusses on a logic that is readily amenable
to runtime analysis, namely Linear Temporal Logic (LTL) [13]. Moreover, it expresses syn-
thesis in terms of abstract or single-threaded monitors—using either pseudocode [23] or
automata [34,5] —executing wrt. such trace. By contrast, we strive towards a more inten-
sional formal definition of online correctness for synthesised concurrent monitors whereby,
for arbitrary property ϕ, the synthesised monitor Mϕ running concurrently wrt. some system
S (denoted as S ‖ Mϕ) respects the following condition:

Whenever S ‖ Mϕ executes to some S ′ ‖ M′ then
If the execution from S to S ′ violates ϕ then

M′ should consistently flag the violation

and

If M′ flags a violation then the execution from S to S ′ should violate ϕ


(1)

The setting of (1) brings to the fore additional issues concerning monitor correctness:

(i) A property logic semantics may be defined over other computational entities apart from
traces, i.e., the current execution in (1), such as the entire computational tree of a pro-
gram. As a result, the logic semantics may not readily lend itself to the formulation of



Synthesising Correct Runtime Monitors 3

monitor correctness outlined in condition (1) above, which only requires monitor detec-
tion whenever a violation occurs. In general, a monitored system that violates a property
according to the original logic semantics, may do so along one computational path but
not along another; this is often the case for concurrent systems with multiple execution
paths as a result of different thread interleavings scheduled at runtime.

(ii) Concurrent monitors may also have multiple execution paths. Condition (1) thus requires
stronger guarantees than those for single-threaded monitors so as to ensure that all these
paths correspond to an appropriate runtime check of system property being monitored.
Stated otherwise, correct concurrent monitors must always/consistently detect violations
and flag them, irrespective of their runtime interleaving.

(iii) Apart from the formal semantics of the source logic (specifying property ϕ), we also
require a formal semantics for the target languages of both the system and the monitor
executing in side-by-side, i.e., S ‖ Mϕ. In most cases, the latter may not be available.

(iv) Online monitor correctness needs to ensure that monitor execution cannot be interfered
with by the system, and viceversa. Whereas adequate monitor instrumentation typically
prevents direct interferences, condition (1) must consider indirect interferences such as
system divergences [32,25], i.e., infinite internal looping making the system unrespon-
sive, which may prevent the monitors from progressing.

(v) Ensuring correctness along the lines of (1) can be quite onerous because every execution
path of the monitor running concurrently with the monitored system, S ‖Mϕ, needs to be
analysed to ensure consistent detections along every thread interleaving. Consequently,
one needs to devise scalable techniques facilitating monitor correctness analysis.

We conduct our study in terms of actor-based [26] concurrent monitors written in Erlang
[11,3], an industry-strength language for constructing fault-tolerant systems. To alleviate our
technical development, we also restrict monitoring to systems written in the same language.
We limit ourselves to a logic that describes reactive properties, i.e., system interactions
with the environment, and focus on the synthesis of asynchronous monitors, performing
runtime analysis through the Erlang Virtual Machine (EVM)’s tracing mechanism. Despite
the typical drawbacks associated with asynchrony, e.g., late detections, our monitoring setup
is in line with the asynchrony advocated by the actor concurrency model, which facilitates
scalable coding techniques such as fail-fast design patterns [11]. Asynchronous monitoring
has also been used in other RV tools, e.g., [14,17], and has proved to be less intrusive
and easier to instrument than synchronous monitoring setups. It is also the more feasible
alternative when monitoring distributed systems [19,16]. More importantly, though, it still
allows us to investigate the main issues arising from the correctness setup outlined in (1),
and we expect most of the issues investigated to carry over in a straightforward fashion to
purely synchronous settings.

As an expository logic for describing reactive properties, we consider an adaptation
of sHML [1] — a syntactic subset of the more expressive µ-calculus logic — describing
safety, i.e., monitorable [28], properties. Our choice for this logic was, in part, motivated
by the fact that the full µ-calculus had already been adapted to describe concurrent Erlang
program behaviour in [22], albeit for model-checking purposes. Given the usual drawbacks
associated with full-blown model checking, our work contributes towards an investigation
of lightweight verification techniques for µ-calculus properties of Erlang programs. It also
allows us to investigate how to extend runtime verification techniques to logics that were not
originally intended for this verification setup. More precisely, sHML is a syntactic subset of
a larger logic used to specify branching-time properties for concurrent systems [2]; our work
can thus be used as a first step towards a broader investigation of which other subsets of this
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Actor Systems, Expressions, Values and Patterns

A, B,C ∈ Actr ::= i[e / q]m | A ‖ B | (ν i)A q, r ∈ MBox ::= ε | v : q
e, d ∈ Exp ::= v | self | e!d | rcv g end | e(d) | spw e | case e of g end | x = e, d | . . .
v, u ∈ Val ::= x | i | a | µy.λx.e | {v, . . . , v} | l | exit | . . . l, k ∈ Lst ::= nil | v : l
p, o ∈ Pat ::= x | i | a | {p, . . . , p} | nil | p : x | . . . g, f ∈ PLst ::= ε | p→ e; g

Fig. 1: Erlang Syntax

branching-time logic can actually be verified at runtime. Crucially, however, sHML acts as
an adequate vehicle to study the monitor correctness issues set out in (1) above.

The rest of the paper is structured as follows. Sec. 2 discusses the formal semantics
of our systems and monitor target language. Sec. 3 discusses reformulations to the logic
facilitating the formulation of monitor correctness, discussed later in Sec. 4. Sec. 5 describes
a synthesis algorithm for the logic and a tool built using the algorithm. Subsequently, Sec. 6
proves the correctness of this monitor synthesis. Sec. 8 concludes.

2 The Language

We require a formal semantics for both our monitor-synthesis target language, and the sys-
tems we intend to monitor. We partially address this problem by expressing both monitors
and systems in terms of the same language, i.e., Erlang, thus only requiring one semantics.
However, we still need to describe the Erlang tracing semantics we intend to use for our
asynchronous monitoring. Although Erlang semantic formalisations exist, e.g., [36,22,8],
none describe this tracing mechanism. We therefore define a calculus—following [36,22]—
for modelling the tracing semantics of a (Turing-complete) subset of the Erlang language
(we leave out distribution, process linking and fault-trapping mechanisms).

Figure 1 outlines the language syntax, assuming disjoint denumerable sets of process/ac-
tor identifiers i, j, h ∈ Pid, atoms a, b ∈ Atom, and variables x, y, z ∈ Var. An executing
Erlang program is made up of a system of actors, Actr, composed in parallel, A ‖ B, where
some identifiers are local (scoped) to subsystems of actors, and thus not known to the envi-
ronment, e.g., i in a system A ‖ (ν i)B. Individual actors, denoted as i[e / q]m, are uniquely
identified by an identifier, i, and consist of an expression, e, executing wrt. a local mailbox,
q (denoted as a list of values); as we explain later, m denotes the actor monitoring modality.
Actor expressions typically consist of a sequence of variable binding xi = ei, terminated by
an expression, efinal:

x1 = e1, . . . , xn = en, efinal

An expression ei in a binding xi = ei, ei+1 is expected to evaluate to a value, v, which is then
bound to xi in the continuation expression ei+1. When instead ei generates an exception,
exit, it aborts subsequent computations1 in ei+k for 1 ≤ k ≤ (n − i). Apart from bindings,
expressions may also consist of self references (to the actor’s own identifier), self, outputs to
other actors, e1!e2, pattern-matching inputs from the mailbox, rcv g end, or pattern-matching
for case-branches, case e of g end (where g is a list of expressions guarded by patterns,
pi→ ei), function applications, e1(e2), and actor-spawning, spw e, amongst others. Values
consist of variables, x, process ids, i, recursive functions, µy.λx.e (where the preceding µy
denotes the binder for function self-reference), tuples {v1, . . . , vn} and lists, l, amongst others.

1 Due to exit exceptions, variable bindings, x = e, d cannot be encoded as function applications, λx.d(e).
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Remark 1 The functions fv(A) and fId(A) return the free variables and free process iden-
tifiers of A resp. and are defined in standard fashion. We write λx.e and d, e for µy.λx.e
and y = d, e resp. when y < fv(e). In p→ e, we replace x in p with whenever x < fv(e).
We use standard shorthand for lists of binders and write µy.λ(x1, . . . xn).e and (ν i1, . . . , in) A
resp. for µy.λx1. . . . λxn.e and (ν i1) . . . (ν in) A. We sometimes elide mailboxes and write i[e],
when these are empty, i[e / ε], or when they do not change in the transition rules that follow.

Specific to our formalisation, we also subject each individual actor, i[e / q]m, to a
monitoring-modality, m, n ∈ {◦, •, ∗}, where ◦, • and ∗ denote monitored, unmonitored and
tracing actors resp. Modalities play a crucial role in our language semantics, defined as a
labelled transition system over systems, A

γ
−−→ B, where actions γ ∈ Actτ, include bound

output labels, (h̃)i!v, and input labels, i?v and a distinguished internal label, τ. In line with
the reactive properties we consider later, our formalisation only traces system interactions
with the environment (send and receive messages) from monitored actors. Thus, whereas
unmonitored, •, and tracing, ∗, actors have standard input and output transition rules

SndU
m ∈ {•, ∗}

j[i!v / q]m i!v
−−−→ j[v / q]m

RcvU
m ∈ {•, ∗}

i[e / q]m i?v
−−−→ i[e / q:v]m

actors with a monitored modality, ◦, i.e., actors j and i in rules SndM and RcvM below,
produce a residual message reporting the send and receive interactions ({sd, i, v} and {rv, i, v}
resp.) at the tracer’s mailbox i.e., actor h with modality ∗ in the rules below; this models
closely the tracing mechanism offered by the Erlang Virtual Machine (EVM) [11]. In our
target language, the list of report messages at the tracer’s mailbox constitutes the system
trace to be used for asynchronous monitoring.

SndM

j[i!v / q]◦ ‖ h[d / r]∗
i!v
−−−→ j[v / q]◦ ‖ h[d / r:{sd, i, v}]∗

RcvM

i[e / q]◦ ‖ h[d / r]∗
i?v
−−−→ i[e / q:v]◦ ‖ h[d / r:{rv, i, v}]∗

Our LTS semantics assumes well-formed actor systems, whereby every actor identifier is
unique; it is termed to be a tracing semantics because a distinguished tracer actor, identified
by the monitoring modality ∗, receives messages recording external communication events
by monitored actors. Formally, we write A

γ
−−→ B in lieu of 〈A, γ, B〉 ∈−→, the least ternary

relation satisfying the rules in Fig. 2. These rules employ evaluation contexts, denoted as C
(described below) specifying which sub-expressions are active. For instance, an expression
is only evaluated when at the top level variable binding, x =C, e or when the expression
denoting the destination of an output has evaluated to a value, v!C; the other cases are also
fairly standard.2 We denote the application of a context C to an expression e as C[e].

C ::= [−] | C!e | v!C | C(e) | v(C) | caseC of g end | x =C, e | . . .

Communication in actor systems happens in two stages: an actor receives messages, keeping
them in order in its mailbox, and then selectively reads them at a later stage using pattern-
matching—rules Rd1 and Rd2 describe how mailbox messages are traversed in order to find

2 In our formalisation, expressions are not allowed to evaluate under a spawn context, spw [−]; this aspect
differs from standard Erlang semantics but allows a lightweight description of function application spawning.
An adjustment in line with the actual Erlang spawning would be straightforward.
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SndM
j[C[i!v] / q]◦ ‖ h[d / r]∗

i!v
−−−→ j[C[v] / q]◦ ‖ h[d /

(
r:{sd, i, v}

)
]∗

RcvM
fv(v) = ∅

i[e / q]◦ ‖ h[d / r]∗
i?v
−−−→ i[e / q:v]◦ ‖ h[d /

(
r:{rv, i, v}

)
]∗

SndU
m ∈ {•, ∗}

j[C[i!v] / q]m i!v
−−−→ j[C[v] / q]m

RcvU
m ∈ {•, ∗} fv(v) = ∅

i[e / q]m i?v
−−−→ i[e / q:v]m

Scp A
γ
−−→ B

(ν j)A
γ
−−→ (ν j)B

j <
(
obj(γ) ∪ sbj(γ)

)
Opn A

(h̃)i!v
−−−−−→ B

(ν j)A
( j,h̃)i!v
−−−−−−→ B

i , j, j ∈ sbj
(
(h̃)i!v

)

Com
j[C[i!v] / q]m ‖ i[e / q]n τ

−−→ j[C[v] / q]m ‖ i[e / q:v]n

Par A
γ
−−→ A′

A ‖ B
γ
−−→ A′ ‖ B

obj(γ) ∩ fId(B) = ∅ Rd1
mtch(g, v) = e

i[C[rcv g end] / (v : q)]m τ
−−→ i[C[e] / q]m

Rd2
mtch(g, v) = ⊥ i[C[rcv g end] / q]m τ

−−→ i[C[e] / r]m

i[C[rcv g end] / (v : q)]m τ
−−→ i[C[e] / (v : r)]m

Cs1
mtch(g, v) = e

i[C[case v of g end]]m τ
−−→ i[C[e]]m

Cs2
mtch(g, v) = ⊥

i[C[case v of g end]]m τ
−−→ i[C[exit]]m

Ass
v , exit

i[C[x = v, e]]m τ
−−→ i[C[e{v/x}]]m

Ext
i[C[x = exit, e]]m τ

−−→ i[C[exit]]m

App
i[C[µy.λx.e (v)]]m τ

−−→ i[C[e{µy.λx.e/y}{v/x}]]m
Slf

i[C[self]]m τ
−−→ i[C[i]]m

Spw
(m = ◦ = n) or (n = •)

i[C[spw e] / q]m τ
−−→ (ν j)

(
i[C[ j] / q]m ‖ j[e / ε]n) Str A ≡ A′

γ
−−→ B′ ≡ B

A
γ
−−→ B

sCom
A ‖ B ≡ B ‖ A

sAss
(A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

sCtxP A ≡ B
A ‖ C ≡ B ‖ C

sExt
i < fId(A)

A‖ (ν i)B ≡ (ν i)
(
B‖A

) sSwp
(ν i)(ν j)A ≡ (ν j)(ν i)A

sCtxS A ≡ B
(νi)A ≡ (νi)B

Fig. 2: Erlang Semantics for Actor Systems

the first one matching a pattern in the pattern list g, releasing the respective guarded expres-
sion e as a result. We choose only to record external communication at tracer processes,
i.e., between the system and the environment, and do not trace internally communication
between actors within the system, irrespective of their modality (see Com); structural equiv-
alence rules, A ≡ B, are employed to simplify the presentation of our rules—see rule Str
and the corresponding structural rules. In Par, the side-condition enforces the single-receiver
property, inherent to actor systems; for instance, it prevents a transition with an action j!v
when actor j is part of the actor system B. We note that in rule Spw, spawned actors in-
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herit monitorability when launched by a monitored actor, but are launched as unmonitored
otherwise.

Mailbox reading—defined by the rules Rd1 and Rd2 in Fig. 2—includes pattern-matching
functionality, allowing the actor to selectively choose which messages to read first from its
mailbox whenever the first pattern p→ e from the pattern list g is matched, returning eσ,
where σ substitutes free variables in e for value binding resulting from the pattern-match;
when no pattern is matched, mailbox reading blocks - see Definition 1.

Definition 1 (Pattern-Matching) We define mtch : PLst × Val → Exp⊥ and vmtch :
Pat × Val→ Sub⊥ as follows:

mtch(g, v) def
=


eσ if g = p→ e : f , vmtch(p, v) = σ

d if g = p→ e : f , vmtch(p, v) = ⊥,mtch( f , v) = d
⊥ otherwise

vmtch(p, v) def
=



∅ if p = v (whenever p is a, i or nil)
{v/x} if p = x⊎n

i=1 σi if p = {p1, . . . , pn}, v = {v1, . . . , vn} where vmtch(pi, vi) = σi

σ ] {l/x} if p = o : x, v = u : l where vmtch(o, u) = σ

⊥ otherwise

σ1 ] σ2
def
=


σ1 ∪ σ2 if dom(σ1) ∩ dom(σ2) = ∅

σ1 ∪ σ2 if ∀v ∈ dom(σ1) ∩ dom(σ2).σ1(v) = σ2(v)
⊥ if σ1 = ⊥ or σ2 = ⊥

⊥ otherwise

Branching for mailbox pattern-matching differs from pattern-match branching for the case
construct, described by the rules Cs1 and Cs2 in Fig. 2: similar to the mailbox read construct,
it matches a value to the first appropriate pattern in the pattern list, launching the respective
guarded expression with the appropriate variable bindings resulting from the pattern-match;
if, however, no match is found it generates an exception, exit, which aborts subsequent
computation, Ext. The rest of the transition rules, such as App for function application and
Slf for retreiving the actor name, are fairly standard.

Remark 2 Our tracing semantics sits at a higher level of abstraction than that offered by
the EVM [11] because trace entries typically contain more information. For instance, the
EVM records internal communication between monitored actors, as an output trace entry
immediately followed by the corresponding input trace entry; we here describe sanitised
traces whereby consecutive matching trace entries are filtered out.

Example 1 (Non-deterministic behaviour) Our systems exhibit non-deterministic behaviour
through either internal or external choices [30,25]. Consider the actor system:

A , (ν j1, j2, h)
(

i[rcv x→ obs!x end / ε]◦ ‖ j1[i!v]◦ ‖ j2[i!u]◦ ‖ h[e / q]∗
)

Actors j1, j2 and h are local, i.e., scoped through the construct (ν j1, j2, h)(. . .), thus not vis-
ible to the environment. The monitored actor i may receive value v internally from actor j1,
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(2) by rule Com, read it from its mailbox, (3) by Rd1, and then output it to some environment
actor obs, (4) by SndM, while recording this external output at h’s mailbox (the tracer).

A
τ
−−−→ (ν j1, j2, h)

(
i[rcv x→ obs!x end / v]◦ ‖ j1[v]◦ ‖ j2[i!u]◦ ‖ h[e / q]∗

)
(2)

τ
−−−→ (ν j1, j2, h)

(
i[obs!v / ε]◦ ‖ j1[v]◦ ‖ j2[i!u]◦ ‖ h[e / q]∗

)
(3)

obs!v
−−−−−→ (ν j1, j2, h)

(
i[v / ε]◦ ‖ j1[v] ‖ j2[i!u] ‖ h[e / q : {sd, obs, v}]∗

)
(4)

But if actor j2 sends its value to i before j1, we observe a different external behaviour

A
τ
−−−→ ·

τ
−−−→ ·

obs!u
−−−−−→ (ν j1, j2, h)

(
i[u / ε]◦ ‖ j1[i!v] ‖ j2[u] ‖ h[e / q : {sd, obs, u}]∗

)
i.e., A eventually outputs u instead of v to obs (accordingly monitor h would hold the entry
{sd, obs, u} instead); these behaviours amount to an internal choice.

External choice results when A receives different external inputs: we can derive

A
i?v1
−−−→ B1 , (ν j1, j2, h)

(
i[rcv x→ obs!x end / v1]◦ ‖ j1[i!v]◦ ‖ j2[i!u]◦ ‖ h[e / q : {rv, i, v1}]∗

)
but also A

i?v2
−−−→ B2 for some appropriate B2. Subsequently, B1 can only produce the output

B1
τ
−−→
∗

·
obs!v1
−−−−−→ B3 whereas from B2 can only produce B2

τ
−−→
∗

·
obs!v2
−−−−−→ B4. Note that, in

the first case, h’s mailbox in B3 is appended by entries {rv, i, v1} : {sd, obs, v1} whereas, in
the second case, h’s mailbox in B4 is appended by {rv, i, v2} : {sd, obs, v2}. �

Example 2 (Infinite Behaviour) Our systems may exhibit infinite behaviour. Actor A (be-
low) may produce an infinite number of output actions j!v (for v , exit ) through repeated
sequences of function applications, (5) by rule App, outputs, (6) by rule SndU and variable
assignments, (7) by rule Ass.

A , i[
(
µy.λx.z = j!x, y(z)

)
(v) / q]•

τ
−−−→ i[z = j!v,

(
µy.λx.z′ = j!x, y(z′)

)
(z) / q]• (5)

j!v
−−−→ i[z = v,

(
µy.λx.z′ = j!x, y(z′)

)
(z) / q]• (6)

τ
−−−→ i[

(
µy.λx.z′ = j!x, y(z′)

)
(v) / q]• = A (7)

Systems with infinite behaviour may also transition to a different system with each compu-
tational step. System B (below) is a slight modification to A that delegates the output to a
newly spawned actor at each iteration. Using a similar sequence of transitions to (5), (6) and
(7) together with rule Spwwe are able to obtain the computation below, whereby the number
of actors grow with each iteration.

B , i[
(
µy.λx.z = spw j!x, y(x)

)
(v) / q]•

( τ
−−−→

)3
·

j!v
−−−→ (ν h)

(
B ‖ h[v / ε]•

)
( τ
−−−→

)3
·

j!v
−−−→ (ν h, h′)

(
B ‖ h[v / ε]• ‖ h′[v / ε]•

) ( τ
−−−→

)3
·

j!v
−−−→ . . .

Such infinite behaviour together with the non-deterministic behaviour discussed in Exam-
ple 1 typically lead to state-explosion problems when systems are verified exhaustively. �
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3 The Logic

In order to specify reactive properties for the actor systems discussed in Sec. 2, we consider
an adaptation of SafeHML [1] (sHML), a sub-logic of the Hennessy-Milner Logic (HML)
with recursion — the latter logic has been shown to be a reformulation of the expressive
µ-calculus [27]. It assumes a denumerable set of formula variables, X,Y ∈ LVar, and is
inductively defined by the following grammar:

ϕ, ψ ∈ sHML ::= ff | ϕ∧ψ | [α]ϕ | X | max(X, ϕ)

The formulas for falsity, ff, conjunction, ϕ∧ψ, and action necessity, [α]ϕ, are inherited from
HML[25], whereas variables X and the recursion construct max(X, ϕ) are used to define
maximal fixpoints; as expected, max(X, ϕ) is a binder for the free variables X in ϕ, inducing
standard notions of open and closed formulas. We only depart from the logic of [1] by lim-
iting formulas to basic actions α, β ∈ BAct, including just input, i?v, and unbound outputs,
i!v, so as to keep our technical development manageable.

Remark 3 The handling of bound output actions, (h̃)i!v, is well understood [31] and does
not pose problems to monitoring, apart from making action pattern-matching cumbersome
(consult [24] for an example of how bound values can be matched); it also complicates
instrumentation (see Sec. 4 and Sec. 5). Certain (silent) τ labels can also be monitored using
minor adaptations (see, for instance, Remark 2); they however increase substantially the size
of the traces recorded, unnecessarily cluttering the tracing semantics of Sec. 2.

The semantics of our logic is defined for closed formulas, using the operation ϕ{ψ/X}, which
substitutes free occurrences of X in ϕ with ψ without introducing any variable capture. It is
specified as the satisfaction relation of Definition 2 (adapted from [1]). In what follows, we
write weak transitions A ===⇒ B and A

α
==⇒ B, for A

τ
−→
∗

B and A
τ
−→
∗

·
α
−→ ·

τ
−→
∗

B resp.
We let s, t ∈ (BAct)∗ range over lists of basic actions and write sequences of weak actions
A

α1
=⇒ · · ·

αn
=⇒ B, where s = α1, . . . , αn, as A

s
==⇒ B (or as A

s
==⇒ when B is unimportant).

Definition 2 (Satisfiability) A relation R ∈ Actr × sHML is a satisfaction relation iff:

(A, ff) ∈ R never

(A, ϕ∧ψ) ∈ R implies (A, ϕ) ∈ R and (A, ψ) ∈ R

(A, [α]ϕ) ∈ R implies (B, ϕ) ∈ R whenever A
α

==⇒ B

(A,max(X, ϕ)) ∈ R implies (A, ϕ{max(X, ϕ)/X}) ∈ R

Satisfiability, |=s, is the largest satisfaction relation; we write A |=s ϕ for (A, ϕ) ∈ |=s. It
follows from standard fixed-point theory that the implications of satisfaction relation are
bi-implications for Satisfiability.

Example 3 (Satisfiability) Consider the safety formula

ϕsafe , max(X, [α][α][β]ff∧ [α]X ) (8)

stating that a satisfying actor system should never perform a sequence of two external ac-
tions α followed by the external action β (through the subformula [α][α][β]ff), and that this
needs to hold after every α action (through [α]X); effectively the formula states that trace
sequences of α-actions greater than two cannot be followed by a β-action.
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A system A1 exhibiting just the external behaviour A1
αβ

==⇒ satisfies ϕsafe, as would a

system A2 with just the infinite behaviour A2
α

=⇒ A2. System A3, with a trace A3
ααβ

===⇒, does
not satisfy this property, A3 6|=s ϕsafe, according to Definition 2. However, this system may
be capable of producing other external traces at runtime (e.g., as a result of some internal

choice). In fact, if A3 exhibits the alternate behaviour A3
β

=⇒, one would be unable to observe
any violation from A3 at runtime since the external trace β is allowed by ϕsafe.

Since actors may violate a property along one execution but satisfy it along another, the
inverse of |=s, i.e., A 6|=s ϕ, is too coarse to be used for a definition of monitor correctness
along the lines of (1) discussed earlier. We thus define a violation relation, Definition 3,
characterising actors violating a property along a specific execution trace.

Definition 3 (Violation) The violation relation, denoted as |=v, is the least relation of the
form (Actr × BAct∗ × sHML) satisfying the following rules:

A, s |=v ff always

A, s |=v ϕ∧ψ if A, s |=v ϕ or A, s |=v ψ

A, αs |=v [α]ϕ if A
α

==⇒ B and B, s |=v ϕ

A, s |=v max(X, ϕ) if A, s |=v ϕ{max(X, ϕ)/X}

We write A, s |=v ϕ in lieu of (A, s, ϕ) ∈ |=v. It also follows from standard fixed-point theory
that the constraints of the violation relation are bi-implications.

Example 4 (Violation) Recall the safety formula ϕsafe defined in (8). Actor A3, from Exam-
ple 3, together with the witness violating trace ααβ violate ϕsafe, i.e., (A3, ααβ) |=v ϕsafe.
However, A3 together with trace β do not violate ϕsafe, i.e., (A3, β) 6|=v ϕsafe. Definition 3
relates a violating trace with an actor only when that trace leads the actor to a violation: if A3

cannot perform the trace αααβ, by Definition 3, we have (A3, αααβ) 6|=v ϕsafe, even though
the trace is prohibited by ϕsafe. A violating trace may also lead a system to a violation before
its end, e.g., (A3, ααβα) |=v ϕsafe according to Definition 3. �

Despite the technical discrepancies between Definition 2 and Definition 3 — e.g., the
use of maximal versus minimal fixpoints and a differing model — we show that Definition 3
corresponds, in some sense, to the dual of Definition 2.

Theorem 1 (Correspondence) ∃s.(A, s) |=v ϕ iff A 6|=s ϕ

Proof For the if case we prove the contrapositive, i.e., that ∀s.A, s 6|=v ϕ implies A |=s ϕ by
co-inductively showing that R = {(A, ϕ) | ∀s.A, s 6|=v ϕ} is a satisfaction relation. The proof
is by induction on the structure of ϕ. We outline two cases (see [20] for the rest):

ϕ∧ψ: From the definition of R we know that ∀s.A, s 6|=v ϕ∧ψ and, by Definition 3, this im-
plies that ∀s.

(
A, s 6|=v ϕ and A, s 6|=v ψ

)
. Distributing the universal quantification yields

∀s.A, s 6|=v ϕ and ∀s.A, s 6|=v ψ, and by the definition of R we obtain (A, ϕ) ∈ R and
(A, ψ) ∈ R, as required for satisfiability relations by Definition 2.

[α]ϕ: From the definition of R we know that ∀s.A, s 6|=v [α]ϕ. In particular, for all s = αt,
we know that ∀t.A, αt 6|=v [α]ϕ. From Definition 3 it must be the case that whenever
A

α
==⇒ B we have that ∀t.B, t 6|=v ϕ, which in turn implies that (B, ϕ) ∈ R (from the

definition of R); this is the implication required by Definition 2.
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For the only-if case we prove ∃s.A, s |=v ϕ implies A 6|=s ϕ by rule induction on A, s |=v

ϕ. Note that A 6|=s ϕ means that there does not exist any satisfiability relation including the
pair (A, ϕ). Again we outline the main cases (see [20] for the rest):

A, s |=v [α]ϕ because s = αs′, A
α

==⇒ B and B, s′ |=v ϕ: By B, s′ |=v ϕ and I.H. we obtain
B 6|=s ϕ, and subsequently, by A

α
==⇒ B, we conclude that A 6|=s [α]ϕ.

A, s |=v max(X, ϕ) because A, s |=v ϕ{max(X, ϕ)/X}: By A, s |=v ϕ{max(X, ϕ)/X} and I.H. we ob-
tain A 6|=s ϕ{max(X, ϕ)/X} which, in turn, implies that A 6|=s max(X, ϕ). �

Definition 3 and Theorem 1 allows us to show that every formula ϕ ∈ sHML denotes a
safety language, as defined in [28,12].3 Informally, this states that whenever we determine
that A 6|=s ϕ along a particular trace s, such a judgement is preserved for all extensions of
that trace. This property, in turn, implies that all formulas in sHML are monitorable [5]. We
formally prove this result in Theorem 2, assuming the standard notion of trace prefixes i.e.,
s ≤ t iff ∃.s′ such that t = ss′.

Theorem 2 (Safety Properties and sHML) A, s |=v ϕ and s ≤ t implies A, t |=v ϕ

Proof By rule induction on A, s |=v ϕ. We outline the main cases leaving the rest for [20]:

A, s |=v ϕ∧ψ because A, s |=v ϕ: By A, s |=v ϕ, s ≤ t and I.H. we obtain A, t |=v ϕ which, by
the same rule, implies A, t |=v ϕ∧ψ.

A, s |=v [α]ϕ because s = αs′, A
α

==⇒ B and B, s′ |=v ϕ: From s = αs′ and s ≤ t we know that
s′ ≤ t′ for some t′ where t = αt′. By s′ ≤ t′, B, s′ |=v ϕ and I.H. we obtain B, t′ |=v ϕ and
by A

α
==⇒ B and t = αt′ we derive A, t |=v [α]ϕ. �

4 Correctness

Specifying online monitor correctness is complicated by the fact that, in general, we have
limited control over the behaviour of the systems being monitored. For starters, a system
that does not satisfy a property may still exhibit runtime behaviour that does not violate it,
as discussed earlier in the case of system A3 of Example 3 and Example 4. We deal with
system non-determinism by only requiring monitor detection when the system performs a
violating execution: this can be expressed through the violation relation of Definition 3.

At runtime, a system may also interfere with the execution of monitors. Appropriate
instrumentation can limit system effects on the monitors. In our asynchronous actor setting,
direct interferences from the system to the monitors can be precluded by (i) locating the
monitors at process identifiers not known to the system (ii) preventing the monitors from
communicating these identifiers to the system. These measures inhibit the system’s ability
to send messages to the monitors.

A system may also interfere with monitor executions indirectly by diverging, i.e., in-
finite internal computation (τ-transitions) without external actions. This can prevent the
monitors from progressing during their execution and thus postpone indefinitely violation
detections [32]. In our case, divergence is handled, in part, by the EVM itself, which guar-
antees fair executions for concurrent actors [11]. In settings where fair executions may be
assumed, it suffices to require a weaker property for monitors, reminiscent of the condition

3 Note that we do not show that sHML captures all the safety properties expressible in HML with recursion,
and there are infact other formulas that specify safety properties such as tt.
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in fair/should-testing [33]. Definition 4 states that, for an arbitrary basic action α, an actor
system A satisfies the predicate should-α if, for all sequences of internal actions leading to
some system B, there always exists an execution from B that can produce the action α; in the
case of monitors, the external should-action is set to a reserved violation-detection action,
e.g., fail!.

Definition 4 (Should-α) A ⇓α
def
=

(
A ==⇒ B implies B

α
==⇒

)
We limit monitoring to monitorable systems, where all actors are subject to a moni-

torable modality, i.e., modality ◦.

A ≡ (ν h̃)
(
i[e / q]m ‖ B

)
implies m = ◦

This guarantees that (i) they can be composed with a tracer actor (ii) all the basic actions
produced by the system are recorded as trace entries at the tracer’s mailbox.4 Monitor cor-
rectness is defined for (unmonitored) basic systems, satisfying the condition:

A ≡ (ν h̃)
(
i[e / q]m ‖ B

)
implies m = •

which are instrumented to execute in parallel with the monitor. Our instrumentation is de-
fined through the operation d−e, Definition 5, converting basic systems to monitorable ones
using trace/2 and set on spawn Erlang commands [11]; see Lemma 1. Importantly, in-
strumentation does not affect the visible behaviour of a basic system; see Lemma 2.

Definition 5 (Instrumentation) d−e :: Actr→ Actr is defined inductively as:

di[e / q]me
def
= i[e / q]◦ dB ‖ Ce def

= dBe ‖ dCe d(ν i)Be def
= (ν i)dBe

Lemma 1 If A is a basic system then dAe is monitorable.

Lemma 2 For all basic actors A where i < fId(A):

A
α
−−−→ B iff


(ν i)

(
dAe ‖ i[e / q]∗

) j!v
−−−−→ (ν i)

(
dBe ‖ i[e / q : {sd, j, v}]∗

)
if α = j!v

(ν i)
(
dAe ‖ i[e / q]∗

) j?v
−−−−→ (ν i)

(
dBe ‖ i[e / q : {rv, j, v}]∗

)
if α = j?v

(ν i)
(
dAe ‖ i[e / q]∗

) τ
−−−→ (ν i)

(
dBe ‖ i[e / q]∗

)
if α = τ

We are now in a position to state monitor correctness, for some predefined violation-
detection monitor action fail!, Definition 6; in what follows, fail is always assumed to be
fresh. We restrict our definition to expressions e located at a fresh scoped location i (not
used by the system, i.e., i < fId(A)) with an empty mailbox, ε; expression e may then spawn
concurrent submonitors while executing. The definition can be extended to generic concur-
rent monitors, i.e., multiple expressions, in straightforward fashion.

Definition 6 (Correctness) e ∈ Exp is a correct monitor for ϕ ∈ sHML iff for any basic
actors A ∈ Actr, i < fId(A), and execution traces s ∈

(
Act \ {fail!}

)∗:
(ν i)

(
dAe ‖ i[e]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
Definition 6 states that e correctly monitors property ϕ whenever, for any trace of en-

vironment interactions, s, of a monitored system, (ν i)
(
dAe ‖ i[e / ε]∗

)
, yielding system B,

if s leads A to a violation of ϕ, then system B should always detect it, and viceversa. It
formalises the definition of monitor correctness outlined earlier in (1) from Sec. 1.

4 Due to asynchronous communication, even scoped actors can produce visible actions by sending mes-
sages to environment actors.
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5 Automated Monitor Synthesis

We define a translation from sHML formulas to Erlang monitors that asynchronously anal-
yse a system and flag an alert whenever they detect violations by the current system execu-
tion (for the respective sHML formula). This translation describes the core algorithm for a
tool automating monitor synthesis from sHML formulas [21].

Despite its relative simplicity, sHML still provides opportunities for performing concur-
rent monitoring. The most obvious case is the translation of conjunction formulas, ϕ1∧ϕ2,
whereby the resulting code needs to check both sub-formulas ϕ1 and ϕ2 so as to ensure that
neither is violated; since conjunctions are prevalent in many monitoring logics, we conjec-
ture that the concepts discussed here extend in straightforward fashion to similar runtime
verification settings with asynchronous concurrent monitors. More specifically, a translation
in terms of two concurrent (sub)monitors, each analysing different parts of the trace so as
to ensure the observation of its respective sub-formula, constitutes a natural synthesis of
the conjunction formula in our target language: it adheres to recommended Erlang practices
advocating for concurrency wherever possible [11], but also allows us to benefit from the
advantages of concurrent monitors discussed in Sec. 1.

Example 5 (Conjunction Formulas) Consider the two sHML formulas

ϕno dup ans , [αcall]
(
max(X, [βans] [βans] ff ∧ [βans] [αcall] X)

)
ϕreact ans , max(Y, [βans] ff ∧ [αcall] [βans] Y )

Formula ϕno dup ans requires that call actions αcall are at most serviced by a single answer
action βans, and that this condition is invariant for any sequence of (αcall, βans) pairs. On the
other hand, formula ϕreact ans requires that answer actions are only produced in response to
call actions; again this is required to be invariant for sequences of (αcall, βans) pairs. Although
one can rephrase the conjunction of the two formulas as a formula without a top-level con-
junction, it is more straightforward to use two concurrent monitors executing in parallel (one
for each sub-formula in ϕno dup ans∧ϕreact ans). There are also other reasons why it would be
beneficial to keep the sub-formulas separate: for instance, keeping the formulas disentan-
gled improves maintainability and separation of concerns when subformulas originate from
distinct requirement specifications.5 �

Multiple conjunctions also arise indirectly when used under fix-point operators. When
synthesising concurrent monitors analysing separate branches of such recursive properties,
it is important to generate monitors that can dynamic spawn further submonitors themselves
as required at runtime, so as to keep the monitoring overheads to a minimum.

Example 6 (Conjunctions and Fixpoints) Recall ϕsafe, from (8) in Ex. 3.

ϕsafe , max(X, [α][α][β]ff∧ [α]X )

Semantically, the formula represents the infinite-depth tree with an infinite number of con-
junctions, as depicted in Fig. 3(a). Although in practice, we cannot generate an infinite
number of concurrent monitors, ϕsafe will translate into possibly more than two concur-
rent monitors executing in parallel. The same applies for the conjunctions used in formulas
ϕno dup ans and ϕreact ans from Example 5. �

5 One potential disadvantage of splitting formulas is that of increasing communication amongst monitors.
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Fig. 3: Monitor Combinator generation for ϕsafe of Ex. 3
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Our monitor synthesis, ~−�m :: sHML → Exp, given in Definition 7, takes a closed,
guarded6 sHML formula and returns an Erlang function. This function takes a map as an
argument (encoded as a list of tuples from formula variables to other synthesised monitors
of the same form) and releases an expression that performs the monitoring.

The map encodes an environment that maps formula variables to logical formula, in-
troduced by the binding in the construct max(X, ϕ); it is used for lazy recursive unrolling
of formulas so as to minimize monitoring overhead. For instance, when synthesising for-
mula ϕsafe from Ex. 3, the algorithm initially spawns only two concurrent submonitors, one
checking for the subformula [α][α][β]ff, and another one checking for the formula [α]X, as
is depicted in Fig. 3(b). Whenever the rightmost submonitor in Fig. 3(b) observes the action
α and reaches X, it consults its environment and retrieves the respective formula bound to
X; this allows it to unfolds X and spawns an additonal submonitor as depicted in Fig. 3(c),
thereby increasing monitor overheads incrementally as needed.

As discussed earlier in Sec. 2, traces are encoded as messages ordered inside the re-
spective mailbox of the monitor. Monitoring thus involves reading these messages from
the mailbox in order, analysing them, and determining what action to take. In a system of
hierarchically-organised concurrent monitors, monitor actions can either flag a violation,
forward messages to other sub-monitors, or spawn new monitors.

Definition 7 (Synthesis) ~−�m is defined on the structure of the sHML formula:

~ff�m def
= λxenv.fail!

~ϕ1∧ϕ2�
m def

=


λxenv. ypid1 = spw

(
~ϕ1�

m(xenv)
)
,

ypid2 = spw
(
~ϕ2�

m(xenv)
)
,

fork(ypid1, ypid2)

~[α]ϕ�m def
=


λxenv.rcv

tr(α) → ~ϕ�m(xenv);
→ stop

end

~max(X, ϕ)�m def
= λxenv. ymon = ~ϕ�m, ymon({′X′, ymon} : xenv)

~X�m def
= λxenv. ymon = lookUp(′X′, xenv), ymon(xenv)

Auxiliary Function definitions and meta-operators:

fork def
= µyrec.λ(xpid1, xpid2).rcv z→

(
xpid1!z, xpid2!z

)
end, yrec(xpid1, xpid2)

lookUp def
=


µyrec.λ(xvar, xmap).case xmap of ({xvar, zmon} : ) → zmon

: ztl → yrec(xvar, ztl)
nil → exit

end

In Definition 7, the synthesised monitor for formula ff immediately reports a violation
to some supervisor actor handling the violation; we assume that the supervisor actor is iden-
tified by the name fail. Conjunction formulas, ϕ1∧ϕ2, translate into the spawning of the

6 In guarded sHML formulas, variables appear only as a sub-formula of a necessity formula.
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respective monitors for ϕ1 and ϕ2, i.e., the command ypidi = spw
(
~ϕi�

m(xenv)
)

in Defini-
tion 7, and the subsequent forwarding of trace messages to these spawned monitors through
the auxiliary function fork. The translated monitor for [α]ϕ behaves as the monitor trans-
lation for ϕ once it receives a trace message encoding the occurrence of action α, i.e., the
guarded expression tr(α) → ~ϕ�m(xenv) in Definition 7, which uses the meta-function tr(−)
defined below:

tr(i?v) def
= {rv, i, v} tr(i!v) def

= {sd, i, v}

Importantly, the monitor for [α]ϕ terminates if the trace message does not correspond to α,
i.e., the guarded expression → stop in Definition 7.

The translations for formulas max(X, ϕ) and X are best understood together. The monitor
for max(X, ϕ) behaves like that for ϕ, under the extended environment where X is mapped
to the monitor for ϕ,i.e., the operation {′X′, ymon} : xenv in Definition 7; this effectively mod-
els the formula unrolling ϕ{max(X, ϕ)/X} from Definition 3. The monitor for X retrieves the
respective monitor translation bound to X in the map using the auxiliary function lookUp,
and then behaves like the monitor retrieved from the environment; the retrieved monitor is
launched by applying it to the environment itself, i.e., expression ymon(xenv) in Definition 7.
Closed formulas ensure that map entries for the formula variables used are always present
in the respective environment generated, whereas guarded formulas guarantee that formula
variables, X, are guarded by necessity conditions, [α]ϕ; this implements the lazy recursive
unrolling of formulas and prevents infinite bound-variable expansions.

Monitor instrumentation, performed through the function Mon (defined below), spawns
the synthesised function initialised to the empty environment, i.e., a nil list, and then acts as
a message forwarder to the spawned process, through the function mLoop (defined below),
for any trace messages it receives through the tracing semantics discussed in Sec. 2.

Mon def
= λxfrm. zpid = spw

(
~xfrm�

m(nil)
)
, mLoop(zpid)

mLoop def
= µyrec.λxpid. rcv zmsg→

(
xpid!zmsg

)
end, yrec(xpid)

Example 7 (Synthesised monitor) Recall ϕreact ans from Example 5:

ϕreact ans , max(Y, [βans] ff ∧ [αcall] [βans] Y )

According to Definition 7, its respective monitor translation is the one described below.
Once the translated function above is applied to the function Mon (defined above), it

is spawned as a concurrent actor where variable xenv (below) is instantiated to the empty
environment, nil. In turn, the spawned function launches two further concurrent actors that
monitor for the subformulas [βans] ff and [αcall] [βans] Y , binding their respective pIds to vari-
ables ypid1 and ypid2 below. Note that these two actors are instantiated with the extended
environment {′Y ′, eunf} : nil, mapping the formula variable Y to the unfolding function eunf

(labelled below). This function is retrieved and executed by the actor monitoring for the
subformula [αcall] [βans] Y , after reading two consecutive messages from its mailbox of the
form αcall and βans. In this setup, the residual expressions of Mon and ~ϕreact ans�

m (after
their respective actor spawnings) behave as trace forwarders to the two concurrent actors
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monitoring for subformula [βans] ff and subformula [αcall] [βans] Y .

~ϕreact ans�
m = ~max(Y, [βans] ff ∧ [αcall] [βans] Y )� =

λxenv.

ymon =

λx′env.
ypid1 = spw


λx′′env.

rcv tr(βans) → λx′′′env.fail!(x′′env);
→ stop

end


(
x′env

) ,

ypid2 = spw



λzenv.
rcv tr(αcall) →

λz′env.
rcv tr(βans) →

λz′′env.

(
ymon = lookUp(′Y ′, z′′env),
ymon(z′′env)

)
(z′env)

→ stop
end


(zenv) ;

→ stop
end



(
x′env

)



,

fork(ypid1, ypid2)





eunf

ymon({′Y ′, ymon} : xenv) �

5.1 Tool Implementation

We have constructed a tool called detectEr [21], that implements the monitor synthesis of
Definition 7: given an sHML formula it generates a monitor that can be instrumented with
minimal changes to the system (actual Erlang code), as discussed earlier in Sec. 4. Despite
not being the main focus of this work, we conducted preliminary empirical experiments
evaluating the performance of our synthesised monitors. This was carried out using a simu-
lated server that launches individual workers to handle a series of requests from individual
clients; we also injected faults making certain workers non-deterministically behave errat-
ically. We synthesised monitors to check that each worker respects the no-duplicate-reply
property from Example 5:

ϕwrkr , [wrk?req]
(
max(X, [clnt!rply] [clnt!rply] ff ∧ [clnt!rply] [wrk?req] X)

)
and calculated the overheads incurred for varying number of client requests (i.e., concurrent
workers); we also compared this with the performance a monitor that checks for property
violations in sequential fashion. Tests were carried out on an Intel Core i7 processor with
8GB of RAM, running Microsoft Windows 8 and EVM version R15B02. The results, sum-
marised in the table below, show that our synthesised concurrent monitoring yields accept-
able overheads that are consistently lower than those of a sequential monitor. We conjecture
that this discrepancy can be increased further when monitoring for recursive properties with
longer chains of necessity formulas. For more extensive empirical results relating to the tool
detectEr, see [9].
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Unmonitored Sequential Concurrent
No of. Reqs. Time ( µs) Time (µs) Ovhd(%) Time(µs) Ovhd.(%) Improv.(%)

250 117.813 121.667 3.27 118.293 0.40 2.86
350 185.232 202.500 9.32 194.793 5.16 4.16
450 237.606 248.333 4.51 242.380 2.01 2.51
550 286.461 319.167 11.42 308.853 7.82 3.60
650 345.543 372.232 7.72 354.333 2.54 5.18

6 Proving Correctness

The preliminary results obtained in Sec. 5 advocate for the feasibility of using concurrent
monitors. We however still need to show that the monitors synthesised are correct. Defini-
tion 6 allows us to state one of the main results of the paper, Theorem 3.

Theorem 3 (Correctness) For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proving Theorem 3 directly can be an arduous task: for any sHML formula, it requires
reasoning about all the possible execution paths of any monitored system in parallel with
the instrumented monitor. We propose a formal technique for alleviating the task of as-
certaining the monitor correctness of Definition 6 by teasing apart three separate (weaker)
monitor-conditions: they are referred to as Violation Detectability, Detection Preservation
and Monitor Separability.

These conditions are important properties in their own right—for instance, Detection
Preservation requires the monitor to behave deterministically wrt. violation detections, whereas
Monitor Separability requires that the monitor computation does not affect the execution of
the monitored system. Moreover, the three conditions pose advantages to the checking of
monitor correctness: since these conditions are independent to one another, they can be
checked in parallel by distinct analysing entities; alternatively, the conditions that are inex-
pensive to check may be carried out before the more expensive ones, thus acting as vetting
phases that abort early and keep the analysis cost to a minimum. More importantly though,
the three conditions together imply our original monitor-correctness criteria.

The first sub-property is Violation Detectability, Lemma 3, guaranteeing that every vio-
lating trace s of formula ϕ is detectable by the respective synthesised monitor,7 (the only-if
case) and that there are no false detections (the if case). This property is easier to verify
than Theorem 3 since it requires us to consider the execution of the monitor in isolation
and, more importantly, requires us to verify the existence of an execution path that detects
the violation; concurrent monitors typically have multiple execution paths and Theorem 3
requires us to prove this property for all of the possible monitor execution paths.

Lemma 3 (Violation Detectability) For basic A ∈ Actr and i < fId(A), A
s

=⇒ implies:

A, s |=v ϕ iff i[Mon(ϕ) / tr(s)]∗
fail!

===⇒

Detection Preservation (Lemma 4), the second sub-property, is not concerned with re-
lating detections to the violations specified by our logic semantics, A, s |=v ϕ. Instead it
guarantees that if a monitor can potentially detect a violation, further reductions do not
exclude the possibility of this detection. In the case where monitors always have a finite

7 We elevate tr to basic action sequences s in pointwise fashion, tr(s), where tr(ε) = ε.
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reduction wrt. their mailbox contents (as it turns out to be the case for monitors synthesised
by Definition 7) this condition guarantees that the monitor will detect violations determinis-
tically. More generally, however, in a setting that guarantees fair actor executions, Lemma 4
ensures that detection will always eventually occur, even when monitors execute in parallel
with other, potentially divergent, systems.

Lemma 4 (Detection Preservation) For all ϕ ∈ sHML, q ∈ Val∗(
i[Mon(ϕ) / q]∗

fail!
===⇒ and i[Mon(ϕ) / q]∗ ==⇒ B

)
implies B

fail!
===⇒

The third sub-property is Separability, Lemma 5, which implies that the behaviour of a
(monitored) system is independent of the monitor and, dually, the behaviour of the monitor
depends, at most, on the trace generated by the system.

Lemma 5 (Monitor Separability) For all basic A ∈ Actr, i < fId(A), ϕ ∈ sHML, and
s ∈

(
Act \ {fail!}

)∗,
(ν i)

(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies ∃B′, B′′s.t.

B ≡ (ν i)
(
B′ ‖ B′′

)
and A

s
=⇒ A′ s.t. B′ = dA′e and i[Mon(ϕ) / tr(s)]∗ ==⇒ B′′

These three properties suffice to show monitor correctness.

Theorem 3 (Correctness). For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proof According to Definition 6 we have to show:

(ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
We assume that (ν i)

(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B holds and consider the two sides of the

bi-implication separately. For the only-if case, we assume

(ν i)
(
A ‖ i[Mon(ϕ)]∗

) s
==⇒ B (9)

A, s |=v ϕ (10)

In order to show B ⇓fail!, we use Definition 4 (Should-α) to expand B ⇓fail!. We thus also

assume B ==⇒ B′, for arbitrary B′, and then be required to prove that B′
fail!
==⇒. From (9),

B ==⇒ B′ and Lemma 5 (Monitor Separability) we know

∃B′′, B′′′s.t. B′ ≡ (ν i)
(
B′′ ‖ B′′′

)
(11)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (12)

i[Mon(ϕ) / tr(s)]∗ ===⇒ B′′′ (13)

From (12), (10) and Lemma 3 (Violation Detectability) we obtain

i[Mon(ϕ) / tr(s)]∗
fail!
==⇒ (14)

and from (13) , (14) and Lemma 4 (Detection Preservation) we get B′′′
fail!
==⇒. Hence, by

(11), and standard transition rules for parallel composition and scoping, Par and Scp, we

can reconstruct B′
fail!

===⇒, as required.
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For the if case we assume:

(ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B (15)

B ⇓fail! (16)

and have to prove A, s |=v ϕ. From (16) we know B
fail!

===⇒. Together with (15), this implies
that there exists a sequence of reductions (τ-transitions) from (ν i)

(
dAe ‖ i[Mon(ϕ)]∗

)
leading

to a (monitored) system that flags a violation:

∃B′ s.t. (ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B′

fail!
−−−→ (17)

From Lemma 5 (Monitor Separability) and (17) we obtain

∃B′′, B′′′s.t. B′ = (ν i)
(
B′′ ‖ B′′′

)
(18)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (19)

i[Mon(ϕ) / tr(s)]∗ ==⇒ B′′′ (20)

From (17), (18) and the assumption that action fail! is fresh to A, we deduce that it can only
be B′′′ that is capable of flagging the violation:

B′′′
fail!
−−→ . (21)

Thus, by (20) and (21), we get

i[Mon(ϕ) / tr(s)]
fail!
==⇒ (22)

Therefore, by (19) , (22) and Lemma 3 (Violation Detectability) we obtain A, s |=v ϕ. �

7 Proving the Monitor Sub-properties

The proof of monitor correctness given in Sec. 6 hinges on the three monitor sub-properties
discussed in the same section. We now consider the proofs for these three monitor properties
for the monitor synthesis presented in Sec. 5. In what follows, we assume that the tracer, i.e.,
where the synthesised monitor is placed in the instrumentation of Definition 6, is located at
the process identifier imtr. Moreover sequences of identifiers are denoted as h̃; for instance,
(ν j̃)A is used to denote the system (ν j1) . . . (ν jn)A whenever the scoped identifiers are
unimportant.

These proofs rely on an encoding of formula substitutions, θ :: LVar⇀ sHML, partial
maps from formula variables to (possibly open) formulas, to lists of tuples containing a
string representation of the variable and the respective monitor translation of the formula as
defined in Definition 7. Formula substitutions are denoted as lists of individual substitutions,
{ϕ1/X1} . . . {ϕn/Xn} where every Xi is distinct, and empty substitutions are denoted as ε.

Definition 8 (Formula Substitution Encoding)

enc(θ) def
=

nil when θ = ε

{′X′, ~ϕ�m} : enc(θ′) if θ = {max(X, ϕ)/X}θ′
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Our monitor lookup function of Definition 7 models variable substitution, Lemma 6. We
can also show that different representations of the same formula substitution do not affect the
outcome of the execution of lookUp on the respective encoding, Lemma 7, which justifies
the abuse of notation that assume a unique representation of a formula substitution.

Lemma 6 If θ(X) = ϕ then i[lookUp(′X′, enc(θ)) / q]m ===⇒ i[~ϕ�m / q]m

Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ. The base case, i.e.,
when we have zero mappings, is trivial since it contradicts the left side of the implication.
The inductive case has two subcases and follows from the pattern-matching branches of the
lookUp code, defined in Definition 7. �

Lemma 7 If θ(X) = ϕ then i[lookUp(′X′, enc(θ′)) / q]m ===⇒ i[~ϕ�m / q]m whenever θ
and θ′ denote the same substitution.

Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ, analogously to the
proof for Lemma 6. �

Our proofs use another technical result, Lemma 8, stating that silent actions are, in some
sense, preserved when actor-mailbox contents of a free actor are increased; note that the
lemma only applies for cases where the mailbox at this free actor decreases in size or remains
unaffected by the τ-action, specified through the sublist condition q′ ≤ q.

Lemma 8 (Mailbox Increase) (ν h̃)(i[e / q]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′]m ‖ B) where i < h̃

and q′ ≤ q implies (ν h̃)(i[e / q : v]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′ : v]m ‖ B)

Proof By rule induction on (ν h̃)(i[e / q]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′]m ‖ B). �

7.1 Violation Detection

In one direction, Lemma 3 (Violation Detection) from Sec. 6 relies on Lemma 13 (see Ap-
pendix A.1) in order to establish the correspondence between violations and the possibility
of detections. In the other direction, Lemma 3 relies on Lemma 16 (see Appendix A.1),
which establishes a correspondence between violation detections and actual violations, as
stated in Definition 3. We recall that Lemma 3 was stated wrt. closed sHML formulas.

Lemma 3 (Violation Detection). Whenever A
s

==⇒ then :

A, s |=v ϕ iff imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒

Proof For the only-if case, we assume A
s

==⇒ and A, s |=v ϕ and are required to prove

imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒. We recall from Sec. 5 that Mon was defined as

λxfrm.zpid = spw
(
~xfrm�

m(nil)
)
, mLoop(zpid). (23)

and as a result we can deduce (using rules such as App, Spw and Par) that

imtr[Mon(ϕ) / tr(s)]∗ ===⇒ (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

)
(24)
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Assumption A, s |=v ϕ can be rewritten as A, s |=v ϕθ for θ = ε, and thus, by Definition 8 we
know nil = enc(θ). By Lemma 13 we obtain

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) fail!
===⇒ (25)

and the result thus follows from (24) and (25).

For the if case, we assume A
s

==⇒ and imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒ and are required to
prove A, s |=v ϕ.

Since ϕ is closed, we can assume the empty list of substitutions θ = ε where, by default,
fv(ϕ) ⊆ dom(θ) and, by Definition 8, nil = enc(θ). By (23) we can decompose the transition

sequence imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒ as

imtr[Mon(ϕ) / tr(s)]∗(
τ
−−−→)3(ν i)

(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) fail!
==⇒ (26)

The result, i.e., A, s |=v ϕ, follows from (26) and Lemma 16. �

7.2 Detection Preservation

In order to prove Lemma 4 from Sec. 6, we are able to require a stronger guarantee, i.e.,
confluence (Definition 9) under weak transitions for the concurrent monitors described in
Definition 7; this is formalised as Lemma 18 in Appendix A.2.

Definition 9 (Confluence modulo Inputs with Identical Recipients)

cnf(A) def
= A

γ1
−→ A′ and A

γ2
−→ A′′ implies


γ1 = i?v1, γ2 = i?v2 or;
γ1 = γ2, A′ = A′′ or;

A′
γ2
−→ A′′′, A′′

γ1
−→ A′′′ for some A′′′

In Definition 9, a system is deemed confluent if, whenever it can perform two separate
actions γ1 and γ2 that are not input actions at the same actor, both residual systems can resp.
still perform the other action to reach the same system.

Lemma 18 (Appendix A.2) allows us to prove Lemma 9, and subsequently Lemma 10;
the latter Lemma implies Detection Preservation, Lemma 4, used by Theorem 3 of Sec. 6.

Lemma 9 For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) / q]∗ ===⇒ A, A
fail!

===⇒ and A
τ
−−→ B implies B

fail!
===⇒

Proof From imtr[Mon(ϕ) / q]∗ ===⇒ A and Lemma 18 we know that cnf(A). The proof is by

induction on A(
τ
−−→)n·

fail!
−−−→.

n = 0: We have A
fail!
−−−→ A′ (for some A′). By A

τ
−−→ B and cnf(A) we obtain B

fail!
−−−→ B′ for

some B′ where A′
τ
−−→ B′.



Synthesising Correct Runtime Monitors 23

n = k + 1: We have A
τ
−−→ A′(

τ
−−→)k·

fail!
−−−→ (for some A′). By A

τ
−−→ A′, A

τ
−−→ B and cnf(A)

we either know that B = A′, in which case the result follows immediately, or else obtain

B
τ
−−→ A′′ (27)

A′
τ
−−→ A′′ for some A′′ (28)

In such a case, by A
τ
−−→ A′ and imtr[Mon(ϕ) / q]∗ ===⇒ A we deduce that

imtr[Mon(ϕ) / q]∗ ===⇒ A′,

and subsequently, by (28), A′(
τ
−−→)k·

fail!
−−−→ and I.H. we obtain A′′

fail!
===⇒; the required

result then follows from (27). �

Lemma 10 (Detection Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) / q]∗ ===⇒ A, A
fail!

===⇒ and A ===⇒ B implies B
fail!

===⇒

Proof By induction on A(
τ
−−→)nB and Lemma 9. �

We are now in a position to prove Lemma 4 of Sec. 6.

Lemma 4 (Detection Preservation). For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) / q]∗
fail!

===⇒ and imtr[Mon(ϕ) / q]∗ ===⇒ B implies B
fail!

===⇒

Proof From Lemma 10, for the case where imtr[Mon(ϕ) / q]∗ ===⇒ imtr[Mon(ϕ) / q]∗. �

7.3 Monitor Separability

For the proof for Lemma 5 of Sec. 6, we make use of Lemma 2, relating the behaviour of a
monitored system to the same system when unmonitored, Lemma 8 delineating behaviour
preservation after extending mailbox contents at specific actors, and Lemma 11(Appendix A),
so as to reason about the structure and generic behaviour of synthesised monitors.

Lemma 5 (Monitor Separability). For all basic actors ϕ ∈ sHML, A ∈ Actr where imtr is
fresh to A, and s ∈

(
Act \ {fail!}

)∗,
(ν imtr)

(
dAe ‖ imtr[Mon(ϕ)]∗

) s
=⇒ B implies ∃B′, B′′s.t.


B ≡ (ν imtr)

(
B′ ‖ B′′

)
A

s
==⇒ A′ s.t. B′ = dA′e

imtr[Mon(ϕ) / tr(s)]∗ ==⇒ B′′

Proof By induction on n in (ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

)
(

γn
−−→ )nB, the length of the sequence

of actions:

n = 0: Since s = ε and A = (ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

)
, the conditions hold trivially.
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n = k + 1: We have (ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

)
(

γk
−−→ )kC

γ
−−→ B. By I.H. we know that

C ≡ (ν imtr)
(
C′ ‖ C′′

)
(29)

A
t

==⇒ A′′ s.t. C′ = dA′′e (30)

imtr[Mon(ϕ) / tr(t)]∗ ==⇒ C′′ (31)

γ = τ implies t = s and γ = α implies tα = s (32)

and by (31) and Lemma 11 we know that

C′′ ≡ (νh)
(
imtr[e / q]∗ ‖ C′′′

)
(33)

fId(C′′) = {imtr} (34)

We proceed by considering the two possible subcases for the structure of γ:
γ = α: By (32) we know that s = tα. By (34) and (33), it must be the case that C ≡

(ν imtr)
(
C′ ‖ C′′

) α
−−→ B happens because

for some B′ C′
α
−−→ B′ (35)

B ≡ (ν imtr)
(
B′ ‖ (νh)

(
imtr[e / q : tr(α)]∗ ‖ C′′′

))
(36)

By (35), (30) and Lemma 2 we know that ∃A′ such that dA′e = B′ and that A′′
α
−−→

A′. Thus by (30) and s = tα we obtain

A
s

==⇒ A′ s.t. B′ = dA′e

By (31), (33) and repeated applications of Lemma 8 we also know that

imtr[Mon(ϕ) / tr(t) : tr(α)]∗ = imtr[Mon(ϕ) / tr(s)]∗ ==⇒

(νh)
(
imtr[e / q : tr(α)]∗ ‖ C′′′

)
= B′′

The result then follows from (36).
γ = τ: Analogous to the other case, where we also have the case that the reduction is

instigated by C′′, in which case the results follows immediately. �

8 Conclusion

We have studied a more intensional notion of correctness for monitor synthesis in a concur-
rent online setting; we worked close to the actual implementation level of abstraction so as
to enhance our confidence in the correctness of our instrumented monitors. More precisely,
we have identified a number of additional issues raised when proving monitor correctness
in this concurrent setting, and built a tool [21], automating monitor synthesis from a reac-
tive property logic (sHML) to asynchronous monitors in a concurrent language (Erlang),
illustrating these issues. The specific contributions of the paper, in order of importance, are:

1. A novel formal definition of monitor correctness, Definition 6, dealing with issues such
as system non-determinism and system interference.

2. A proof technique teasing apart aspects of the monitor correctness definition, Lemma 3,
Lemma 4 and Lemma 5, allowing us to prove correctness in stages. We subsequently
apply this technique to prove the correctness of our tool, Theorem 3.
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3. An alternative violation characterisation of the logic, sHML, that is more amenable to
runtime analysis and reasoning about monitor correctness, together with a proof of cor-
respondence for this reformulation, Theorem 1.

4. An extension of a formalisation for Erlang describing its tracing semantics, Sec. 2.
5. A formal monitor synthesis definition from sHML formulas to Erlang code, Definition 7.

Related Work: The aforementioned work, [23,34,5], discusses monitor synthesis from a
different logic, namely LTL, to either pseudocode, automata or Büchi automata; none of this
work considers online concurrent monitoring, circumventing issues associated with concur-
rency and system interference. There is considerable work on runtime monitoring of web
services, e.g., [18,7] verifying the correctness of reactive (communication) properties, simi-
lar to those expressed through sHML; to the best of our knowledge, none of this work tackles
correct monitor synthesis from a specified logic. In [14], Colombo et al. develop an Erlang
RV tool using the EVM tracing mechanism but do not consider the issue of correct moni-
tor generation. Fredlund [22] adapted a variant of HML to specify correctness properties in
Erlang, albeit for model checking purposes.

There is also work relating HML formulas with tests, namely [1], but also [10]. Our
monitors differ from tests, as in [1], in a number of ways: (i) they are defined in terms
of concurrent actors, as opposed to sequential CCS processes; (ii) they analyse systems
asynchronously, acting on traces, whereas tests interact with the system directly, forcing
certain system behaviour; (iii) they are expected to always detect violations when they occur
whereas tests are only required to have one possible execution that detects violations.

In recent work, Bocchi et al. [6] studied monitors that enforce multi-party session types
at runtime for high-level specifications of message-passing programs, expressed using a dis-
tributed π-calculus. Their methodology differs from ours in a number of ways. In particular,
(i) they give a direct operational semantics to their session specifications in terms of an LTS,
which allows them to interact directly with the processes that they monitor; by contrast, we
synthesise monitors from our specification formulas as programs in the host language, and
focus on proving the correctness of this synthesis; (ii) the parallelisation criteria for their
session projections is based on the participants being monitored whereas we parallelise on
the basis of the structure of the formula, namely across formula conjunctions; (iii) they work
at the level of an abstract model, namely a distributed π-calculus, whereas we work at a level
of abstraction that is close to actual Erlang code that can be compiled and executed.

There is other work on the decomposition of monitor synthesis. In [4], they synthesise
a dedicated monitor from an LTL specification for each synchronous component executing
in a system, thereby localising monitoring to a component level. By contrast, our monitor
synthesis is agnostic to the internal structure of the monitored system, and decomposition is
purely based on the structure of the correctness formulas. In [35], they define a distributed
logic for specifying correctness properties of distributed systems and provide a distributed
monitor synthesis algorithm for the logic, implemented as actor-based tool called DiAna.
Their setting is however different from ours: their systems do not assume a global clock
and monitoring work over partially ordered traces (one for each location). Monitoring in the
absence of global clocks is also considered in [19], where they develop bisimulation-based
coinductive techniques to reason about monitored systems. Crucially, none of these works
considers issues relating to the correctness of monitor synthesis studied in this paper.

Future Work: The monitoring semantics of Sec. 2 can be used as a basis to prove the cor-
rectness of existing Erlang monitoring tools such as [14,15]. sHML can also be extended to
handle limited, monitorable forms of liveness properties (often termed co-safety properties
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[28]); the work carried out in [10] provides an ideal starting point. It is also worth explor-
ing mechanisms for synchronous monitoring, as opposed to asynchronous variant studied in
this paper. Erlang also facilitates monitor distribution which can be used to lower monitoring
overheads [35,16]. Distributed monitoring can also be used to increase the expressivity of
our tool so as to handle correctness properties for distributed programs. However, this poses
a departure from our setting because the unique trace described by our framework would be
replaced by separate independent traces at each location, where the lack of a total ordering
of events may prohibit the detection of certain violations [19].
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A Auxiliary Proofs

For the proofs in Sec. 7, we find it convenient to prove a technical result, Lemma 11, identifying the possible
structures a monitor can be in after an arbitrary number of silent actions; the lemma also establishes that the
only possible external action that a synthesised monitors can perform is the fail action: this property helps us
to reason about the possible interactions that concurrent monitors may engage in.

Lemma 11 (Monitor Transitions and Structure) For all ϕ ∈ sHML, q ∈ (Val)∗, θ :: LVar ⇀ sHML, if
i[~ϕ�m(enc(θ)) / q]•(−→)nA then

1. A
α
−−−→ B implies α = fail! and;

2. A has the form i[~ϕ�m(enc(θ)) / q]• or, depending on ϕ:
ϕ = ff: A ≡ i[fail! / q]• or A ≡ i[fail / q]•

ϕ = [α]ψ: A ≡ i[rcv (tr(α)→ ~ψ�m(enc(θ)) ; → ok) end / q]• or(
A ≡ B where i[~ψ�m(enc(θ)) / r]•(

τ
−−→)k B for some k < n and q = tr(α) : r

)
or

A ≡ i[ok / r]• where q = u : r

ϕ = ϕ1∧ϕ2: A ≡ i
[

y1 = spw
(
~ϕ1�

m(enc(θ))
)
,

y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) / q

]•
or
A ≡ (ν j1)

(
i[e / q]• ‖ (ν h̃1)( j1[e1 / q1]• ‖ B)

)
where

– e is y1 = j1, y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) or

y2 = spw (~ϕ2�
m(enc(θ))) , fork( j1, y2)

– j1[~ϕ1�
m(enc(θ))]• (

τ
−−→)k (ν h̃1)( j1[e1 / q1]• ‖ B) for some k < n

or

A ≡ (ν j1, j2)
(

i[y2 = j2, fork( j1, y2) / q]•

‖ (ν h̃1)( j1[e1 / q1]• ‖ B) ‖ (ν h̃2)( j2[e2 / q2]• ‖ C)

)
where

– j1[~ϕ1�
m(enc(θ))]• (

τ
−−→)k (ν h̃1)( j1[e1 / q1]• ‖ B) for some k < n

– j2[~ϕ2�
m(enc(θ))]• (

τ
−−→)l (ν h̃2)( j2[e2 / q2]• ‖ C) for some l < n

or
A ≡ (ν j1, j2)

(
i[e / r]• ‖ (ν h̃1)( j1[e1 / q′1]• ‖ B) ‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
where

– e is either fork( j1, j2) or
(
rcv z→ j1!z, j2!z end, fork( j1, j2)

)
or j1!u, i2!u, fork( j1, j2) or j2!u, fork( j1, j2)

– j1[~ϕ1�
m(enc(θ)) / q1]• (

τ
−−→)k (ν h̃1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q

– j2[~ϕ2�
m(enc(θ)) / q2]• (

τ
−−→)l (ν h̃2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q

ϕ = X: A ≡ i[y = lookUp(′X′, enc(θ′)), y(enc(θ)) / q]• where θ′ < θ or

A ≡ i

y =


case enc(θ′) of {′X′, zmon} : → zmon;

: ztl→ lookUp(′X′, ztl);

nil→ exit;

end

 , y(enc(θ)) / q


•

where θ′ < θ, or
A ≡ B where
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– i[y = ~ψ�m, y(enc(θ)) / q]• (
τ
−−→)k B

– θ(X) = ψ
or A ≡ i[y = exit, y(enc(θ)) / q]• or A ≡ i[exit / q]•

ϕ = max(X, ψ): A ≡ B where i[~ψ�m({′X′, ~ψ�m} : enc(θ)) / q]•(
τ
−−→)k B

for k < n.

Proof The proof is by strong induction on i[~ϕ�m(lenv) / q]•(
τ
−−→)nA. The inductive case involves a long and

tedious list of case analysis exhausting all possibilities. �

A.1 Proofs for establishing Violation Detection

Lemma 13 uses Lemma 12 which relates possible detections by monitors synthesised from subformulas to
possible detections by monitors synthesised from conjunctions using these subformulas.

Lemma 12 For an arbitrary θ, (ν i)
(
imtr[mLoop( j1) / tr(s)]∗ ‖ i[~ϕ1�

m(enc(θ))]•
) fail!

==⇒ implies (ν i)
(
imtr[mLoop(i) /

tr(s)]∗ ‖ i[~ϕ1∧ϕ2�
m(enc(θ))]•

) fail!
==⇒ for any ϕ2 ∈ sHML.

Proof By Definition 7, we know that we can derive the sequence of reductions

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(enc(θ))]•
)

==⇒

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ (ν j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ))]• ‖ h[~ϕ2�
m(enc(θ))]•

))
We then prove, by induction on the structure of s, the following (see [20] for details):

(ν i)
(
imtr[mLoop(i) / tr(s)]• ‖ i[~ϕ1�

m(enc(θ)) / q]•
) fail!

==⇒ implies

(ν i)
(

imtr[mLoop(i) / tr(s)]∗ ‖
(ν j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ)) / q]• ‖ h[~ϕ2�
m(enc(θ)) / q]•

) ) fail!
==⇒

�

Lemma 13 If A, s |=v ϕθ and lenv = enc(θ) then

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
===⇒ .

Proof Proof by rule induction on A, s |=v ϕθ:

A, s |=v ffθ: Using Definition 7 for the definition of ~ff�m and the rule App (and Par and Scp), we have

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ff�m(lenv)]•) ==⇒ (ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[fail!]•)

The result follows trivially, since the process i can transition with a fail! action in a single step using the
rule SndU.

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ1θ: By A, s |=v ϕ1θ and I.H. we have

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1�
m(lenv)]•)

fail!
==⇒

The result thus follows from Lemma 12, which allows us to conclude that

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�
m(lenv)]•)

fail!
==⇒

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ2θ: Analogous.
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A, s |=v ([α]ϕ)θ because s = αt, A
α

==⇒ B and B, t |=v ϕθ: Using the rule App Scp and Definition 7 for the
property [α]ϕ we derive (37), by executing mLoop— see Definition 7 — we obtain (38), and then by
rule Rd1 we derive (39) below.

(ν i)
(
imtr[mLoop(i) / tr(αt)]∗ ‖ i[~ϕ�m(lenv)]•

) τ
−−−→ (37)

(ν i)
(
imtr[mLoop(i) / tr(αt)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end]•

)
==⇒ (38)

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end / tr(α)]•

) τ
−−−→ (39)

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

)
By B, t |=v ϕθ and I.H. we obtain

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
==⇒

and, thus, the result follows by (37), (38) and (39).
A, s |=v (max(X, ϕ))θ because A, s |=v ϕ{max(X, ϕ)/X}θ: By Definition 7 and App for process i, we derive

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ϕ)�m(lenv)]•

)
==⇒

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

)
(40)

Assuming the appropriate α-conversion for X in max(X, ϕ), we note that from lenv = enc(θ) and Defini-
tion 8 we obtain

enc({max(X, ϕ)/X}θ) = {′X′, ~ϕ�m} : lenv (41)

By A, s |=v ϕ{max(X, ϕ)/X}ρ, (41) and I.H. we obtain

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

) fail!
==⇒ (42)

The result follows from (40) and (42). �

Lemma 16 relies on a technical result, Lemma 15 which allows us to recover a violating reduction
sequence for a subformula ϕ1 or ϕ2 from that of the synthesised monitor of a conjunction formula ϕ1∧ϕ2.
Lemma 15 relies on Lemma 14.

Lemma 14 For some l ≤ n:

(ν j, h)
(
i
[
fork( j, h) / qfrk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−−→)n fail!

−−−→

implies (ν j)
(
imtr[mLoop( j) / qfrk]∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−−→)l fail!

−−−→

or (ν h)
(
imtr[mLoop(h) / qfrk]∗ ‖ h[~ϕ2�

m(lenv) / r]•
)
(

τ
−−−→)l fail!

−−−→

Proof By induction on the structure of the mailbox qfrk at actor i. �

Lemma 15 For some l ≤ n

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ (ν j, h)

(
i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

))
(

τ
−−−→)k fail!

−−−→

implies (ν i)
(
imtr[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

or (ν i)
(
imtr[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

Proof Proof by induction on the structure of s.

s = ε: From the structure of mLoop, we know that after the function application, the actor imtr[mLoop(i)]∗

is stuck. Thus we conclude that it must be the case that

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k fail!

−−−→

where k = n or k = n − 1. In either case, the required result follows from Lemma 14.
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s = αs′: We have two subcases:
– If

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k fail!

−−−→

for some k ≤ n then, by Lemma 14 we obtain

(ν j)
(
imtr[mLoop( j) / tr(t)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

or (ν h)
(
imtr[mLoop(h) / tr(t)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

for some l ≤ k. By Lemma 8 we thus obtain

(ν j)
(
imtr[mLoop( j) / tr(ts)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

or (ν h)
(
imtr[mLoop(h) / tr(ts)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

as required.
– Otherwise, it must be the case that

(ν i)

 imtr[mLoop(i) / tr(s)]∗

‖ (ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−−→)k (43)

(ν i)
(

imtr[mLoop(i) / tr(s′)]∗

‖ (ν j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

) ) (
τ
−−−→)n−k fail!

−−−→ (44)

For some k = 3 + k1 where

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k1

(ν j, h)
(
i
[
efork / q

]•
‖ A

) (45)

By (45) and Lemma 8 we obtain

(ν j, h)
(

i
[
fork( j, h) / tr(t) : tr(α)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k1

(ν j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

)
and by (44) we can construct the sequence of transitions:

(ν i)

 imtr[mLoop(i) / tr(s′)]∗

‖ (ν j, h)
(

i
[
fork( j, h) / tr(t) :α

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−−→)n−3 fail!

−−−→

Thus, by I.H. we obtain, for some l ≤ n − 3

(ν i)
(
imtr[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

or (ν i)
(
imtr[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−−→

The result follows since s = αs′. �

Equipped with Lemma 15, we can now prove Lemma 16.

Lemma 16 If A
s

==⇒, lenv = enc(θ) and (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
==⇒ then A, s |=v ϕθ,

whenever fv(ϕ) ⊆ dom(θ).

Proof By strong induction on the number of transitions n, leading to the action fail!

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

)
(
τ
−−→)n fail!

−−−→
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n = 0: By inspection of the definition for mLoop, and by case analysis of ~ϕ�m(lenv) from Definition 7, it
can never be the case that

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
−−−→

. Thus the result holds trivially.
n = k + 1: We proceed by case analysis on ϕ.

ϕ = ff: The result holds immediately for any A and s by Definition 3.
ϕ = [α]ψ: By Definition 7, we know that

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~[α]ψ�m(lenv)]•

)
(

τ
−−−→)k1 (46)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~[α]ψ�m(lenv) / tr(s1)]•

) τ
−−−→ (47)

(ν i)


imtr[mLoop(i) / tr(s2)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1)

]•  (
τ
−−→)k2

fail!
−−−→ (48)

where k + 1 = k1 + k2 + 1 and s = s1 s2 (49)

From the analysis of the code in (48), the only way for the action fail! to be triggered is by choosing
the guarded branch tr(α)→ ~ϕ�m(lenv) in actor i. This means that (48) can be decomposed into the
following reduction sequences.

(ν i)
(

imtr[mLoop(i) / tr(s2)]∗ ‖
i
[
rcv (tr(α)→ ~ψ�m(lenv) ; → ok) end / tr(s1)

]• ) (
τ
−−→)k3 (50)

(ν i)
(

imtr[mLoop(i) / tr(s4)]∗ ‖
i
[
rcv (tr(α)→ ~ψ�m(lenv) ; → ok) end / tr(s1 s3)

]• ) τ
−−−→ (51)

(ν i)imtr[mLoop(i) / tr(s4)]∗ ‖ i
[
~ψ�m(lenv) / tr(s5)

]•( τ
−−−→)k4

fail!
−−−→ (52)

where k2 = k3 + k4 + 1 and s1 s3 = αs5 and s2 = s3 s4 (53)

By (49) and (53) we derive
s = αt where t = s5 s4 (54)

From the definition of mLoop we can derive

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ψ�m(lenv)]•

)
(

τ
−−−→)k5

(ν i)
(
imtr[mLoop(i) / tr(s4)]∗ ‖ i

[
~ψ�m(lenv) / tr(s5)

]•) (55)

where k5 ≤ k1 + k3. From (54) we can split A
s

==⇒ as A
α

===⇒ A′
t

==⇒ and from (55), (52), the fact that
k5 + k4 < k + 1 = n from (49) and (53), and I.H. we obtain

A′, t |=v ψθ (56)

From (56), A
α

===⇒ A′ and Definition 3 we thus conclude A, s |=v
(
[α]ψ

)
θ.

ϕ = ϕ1∧ϕ2 From Definition 7, we can decompose the transition sequence as follows

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv)]•
)
(
τ
−−→)k1 (57)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv) / tr(s1)]•
) τ
−−−→ (58)

(ν i)


imtr[mLoop(i) / tr(s2)]∗

‖ i
[

y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
, fork(y1, y2) / tr(s1)

]•  (
τ
−−→)k2 (59)

(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ i
[

y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
, fork(y1, y2) / tr(s1 s3)

]•  (
τ
−−→)2 (60)

(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1 s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−−→)k3

fail!
−−−→ (61)

where k + 1 = k1 + 1 + k2 + 2 + k3, s = s1 s2 and s2 = s3 s4 (62)
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From (61) we can deduce that there are two possible transition sequences how action fail! was
reached:

1. If fail! was reached because j[~ϕ1�
m(lenv)]•(

τ
−−−→)k4

fail!
−−−→ on its own, for some k4 ≤ k3 then,

by Par and Scp we deduce

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)k4

fail!
−−−→

From (62) we know that k4 < k + 1 = n, and by the premise A
s

==⇒ and I.H. we obtain
A, s |=v ϕ1θ. By Definition 3 we then obtain A, s |=v

(
ϕ1∧ϕ2

)
θ

2. Alternatively, (61) can be decomposed further as

(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1 s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−−→)k4 (63)

(ν i)


imtr[mLoop(i) / tr(s6)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1 s3 s5)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−→)2 (64)

(ν i)

 imtr[mLoop(i) / tr(s6)]∗

‖ (ν j, h)
(

i
[
fork( j, h) / tr(s1 s3 s5)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−−→)k5

fail!
−−−→ (65)

wherek3 = k4 + 2 + k5 and s4 = s5 s6 (66)

From (65) and Lemma 15 we know that, for some k6 ≤ k5 either

(ν i)
(
imtr[mLoop(i) / tr(s1 s3 s5 s6)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)k6

fail!
−−−→

or (ν i)
(
imtr[mLoop(i) / tr(s1 s3 s5 s6)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)k6

fail!
−−−→

From (62) and (66) we know that s = s1 s3 s5 s6 and that k6 < k+1 = n. By I.H., we obtain either
A, s |=v ϕ1θ or A, s |=v ϕ2θ and, in either case, by Definition 3 we deduce A, s |=v

(
ϕ1∧ϕ2

)
θ.

ϕ = X By Definition 7, we can deconstruct

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
(
τ
−−→)k+1 fail!

−−−→

as

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
==⇒

τ
−−→ (67)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[y = lookUp(′X′, lenv), y(lenv) / tr(s1)]•

)
==⇒

τ
−−→ (68)

(ν i)
(
imtr[mLoop(i) / tr(s4)]∗ ‖ i[y = v, y(lenv) / tr(s1 s3)]•

)
==⇒

τ
−−→ (69)

(ν i)
(
imtr[mLoop(i) / tr(s6)]∗ ‖ i[v(lenv) / tr(s1 s3 s5)]•

)
==⇒

fail!
−−−−→ (70)

where s = s1 s2, s2 = s3 s4 and s4 = s5 s6

Since X ∈ dom(θ), we know that θ(X) = ψ for some ψ. By the assumption lenv = enc(θ) and
Lemma 6 we obtain that v = ~ψ�m. Hence, by (67), (68), (69) and (70) we can reconstruct

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m(lenv)]•

)
(
τ
−−→)k1

(ν i)
(
imtr[mLoop(i) / tr(s6)]∗ ‖ i[~ψ�m(lenv) / tr(s1 s3 s5)]•

)
(
τ
−−→)k2

fail!
−−−−→ (71)

where k1 + k2 < k + 1 = n. By (71) and I.H. we obtain A, s |=v ψ, which is the result required, since
by θ(X) = ψ we know that Xθ = ψ.
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ϕ = max(X, ψ) By Definition 7, we can deconstruct

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−−→)k+1 fail!

−−−→

as follows:

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−−→)k1

τ
−−→

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv) / tr(s1)]•

)
(
τ
−−→)k2

fail!
−−−→

from which we can reconstruct the transition sequence

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv)]•

)
(
τ
−−→)k1+k2

fail!
−−−→ (72)

By the assumption lenv = Γ(θ) we deduce that {′X′, ψ} : lenv = enc({max(X, ψ)/}θ) and, since k1 + k2 <

k + 1 = n, we can use (72), A
s

==⇒ and I.H. to obtain A, s |=v ψ{max(X, ψ)/X}θ. By Definition 3 we
then conclude A, s |=v max(X, ψ)θ. �

A.2 Proofs for establishing Detection Preservation

Lemma 18 relies heavily on Lemma 17.

Lemma 17 (Translation Confluence) For all ϕ ∈ sHML, q ∈ (Val)∗ and θ :: LVar⇀ sHML, i[~ϕ�m(enc(θ)) /
q]• ===⇒ A implies cnf(A).

Proof Proof by strong numerical induction on n in i[~ϕ�m(enc(θ)) / q]•(
τ
−−→)nA.

n = 0: The only possible τ-action that can be performed by i[~ϕ�m(enc(θ)) / q]• is that for the function
application of the monitor definition, i.e.,

i[~ϕ�m(enc(θ)) / q]•
τ
−−−→ i[e / q]• for some e. (73)

Apart from that i[~ϕ�m(enc(θ)) / q]• can also only perform input action at i, i.e.,

i[~ϕ�m(enc(θ)) / q]•
i?v
−−−−→ i[~ϕ�m(enc(θ)) / q : v]•

On the one hand, we can derive i[e / q]•
i?v
−−−−→ i[e / q : v]•. Moreover, from (73) and Lemma 8 we can

deduce i[~ϕ�m(enc(θ)) / q : v]•
τ
−−−→ i[e / q : v]• which allows us to close the confluence diamond.

n = k + 1: We proceed by case analysis on the property ϕ, using Lemma 11 to infer the possible structures of
the resulting process. Again, most involving cases are those for conjunction translations, as they generate
more than one concurrent actor; we discuss one of these below:
ϕ = ϕ1∧ϕ2: By Lemma 11, A can have any of 4 general structures, one of which is

A ≡ (ν j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
(74)

where

j1[~ϕ1�
m(lenv) / q1]• (

τ
−−→)k (ν h̃1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q (75)

j2[~ϕ2�
m(lenv) / q2]• (

τ
−−→)l (ν h̃2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q (76)

By Lemma 11, (75) and (76) we also infer that the only external action that can be performed by the
processes (ν h̃1)( j1[e1 / q′1]• ‖ B) and (ν h̃2)( j2[e2 / q′2]• ‖ C) is fail!. Moreover by (75) and (76)
we can also show that

fId
(
(ν h̃1)( j1[e1 / q′1]• ‖ B)

)
= { j1} fId

(
(ν h̃2)( j2[e2 / q′2]• ‖ C)

)
= { j2}
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Thus these two subactors cannot communicate with each other or send messages to actor i. This also
means that the remaining possible actions that A can perform are:

A
τ
−−−→ (ν j1, j2)

(
i[u, fork( j1, j2) / q]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2 : u]• ‖ C)

)
or (77)

A
τ
−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (ν h̃′1)( j1[e′1 / q′′1 ]• ‖ B′)
‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
because (ν h̃1)( j1[e1 / q′1]• ‖ B)

τ
−−−→ (ν h̃′1 )( j1[e′1 / q′′1 ]• ‖ B′) or

(78)

A
τ
−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
because (ν h̃2)( j2[e2 / q′2]• ‖ C)

τ
−−−→ (ν h̃′2 )( j2[e′2 / q′′2 ]• ‖ C′) or

(79)

A
i?v
−−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) / q : v]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B) ‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
(80)

We prove confluence for the pair of actions (77) and (79) and leave the other combinations for the
interested reader. From (79) and Lemma 8 we derive

(ν h̃2)( j2[e2 / q′2 : u]• ‖ C)
τ
−−−→ (ν h̃′2 )( j2[e′2 / q′′2 : u]• ‖ C′)

and by Par and Scp we obtain

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2 : u]• ‖ C)

)
τ
−−−→

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(81)

Using Com, Str, Par and Scp we can derive

(ν j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
τ
−−−→

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(82)

thus we close the confluence diamond by (81) and (82). �

Lemma 18 (Weak Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) / q]∗ ===⇒ A implies cnf(A)

Proof By strong induction on n, the number of transitions in imtr[Mon(ϕ) / q]∗ (
τ
−−−→)n A.

n = 0 We know A = imtr[Mon(ϕ) / q]∗. It is confluent because it can perform either of two actions, namely
a τ-action for the function application (see App in Fig. 2), or else an external input at imtr, (see RcvU
in Fig. 2). The matching moves can be constructed by RcvU on the one hand, and by Lemma 8 on the
other, analogously to the base case of Lemma 17.

n = k + 1 By performing an analysis similar to that of Lemma 11, but for imtr[Mon(ϕ) / q]∗ instead, we can
determine that this actor can only weakly transition to either of the forms below whereby, for cases (ii)
to (v), we obtain B as a result of i[~ϕ�m(lenv) / r]• ==⇒ B for some r:
(i) A = imtr[M = spw (~ϕ�m(nil)), mLoop(M) / q]∗

(ii) A ≡ (ν i)
(
imtr[mLoop(i) / q]∗ ‖ B

)
(iii) A ≡ (ν i)

(
imtr[rcv z→ i!z end, mLoop(i) / q]∗ ‖ B

)
(iv) A ≡ (ν i)

(
imtr[i!v, mLoop(i) / q]∗ ‖ B

)
(v) A ≡ (ν i)

(
imtr[v, mLoop(i) / q]∗ ‖ B

)
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We here focus on the 4th case of monitor structure; the other cases are analogous. From i[~ϕ�m(lenv) /
r]• ==⇒ B and Lemma 11 we know that

B
γ
−−−→ implies γ = fail! or γ = τ

B ≡ (νh)
(
i[e / r]• ‖ C

)
where fId(B) = i

This means that (ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

)
can only exhibit the following actions:

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) imtr?u
−−−−−→

(ν i)
(
imtr[i!v, mLoop(i) / q : u]∗ ‖ B

) (83)

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) τ
−−→

(ν i)
(
imtr[v, mLoop(i) / q]∗ ‖ (νh)

(
i[e / r : v]• ‖ C

)) (84)

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) τ
−−→ (ν i)

(
imtr[i!v, mLoop(i) / q]∗ ‖ B′

)
(85)

Most pairs of action can be commuted easily by Par and Scp as they concern distinct elements of the
actor system. The only non-trivial case is the pair of actions (84) and (85), which can be commuted using
Lemma 8, in analogous fashion to the base case. �
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