332,855 research outputs found

    On Some Computational Problems in Local Fields

    Get PDF
    Lattices in Euclidean spaces are important research objects in geometric number theory, and they have important applications in many areas, such as cryptology. The shortest vector problem (SVP) and the closest vector problem (CVP) are two famous computational problems about lattices. In this paper, we define so-called p-adic lattices, and consider the p-adic analogues of SVP and CVP in local fields. We find that, in contrast with lattices in Euclidean spaces, the situation is completely different and interesting. We also develop relevant algorithms, indicating that these problems are computable

    Development and verification of global/local analysis techniques for laminated composites

    Get PDF
    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    Full text link
    This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly nonlinear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged separately. We rely here on the micro-macro framework proposed in (Ladev\`eze, Loiseau, and Dureisseix, 2001). The method proposed in this paper introduces three additional features: (i) the adaptation of the macro-basis to situations where classical homogenization does not provide a good preconditioner, (ii) the use of non-linear relocalization to decrease the number of global problems to be solved in the case of unevenly distributed non-linearities, (iii) the adaptation of the approximation of the local Schur complement which governs the convergence of the proposed iterative technique. Computations of delamination and delamination-buckling interaction with contact on potentially large delaminated areas are used to illustrate those aspects
    corecore