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Abstract
Lattices in Euclidean spaces are important research objects in geometric number

theory, and they have important applications in many areas, such as cryptology.
The shortest vector problem (SVP) and the closest vector problem (CVP) are two
famous computational problems about lattices. In this paper, we define so-called p-
adic lattices, and consider the p-adic analogues of SVP and CVP in local fields. We
find that, in contrast with lattices in Euclidean spaces, the situation is completely
different and interesting. We also develop relevant algorithms, indicating that these
problems are computable.
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1. Introduction

Let R be the field of real numbers, and let n be a positive integer. Denote Rn =

{(x1, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n}. Let ∥ · ∥ be a norm on Rn, namely, for

a ∈ R,x,y ∈ Rn, ∥ x ∥ is a nonnegative real number satisfying: (1) ∥ x ∥= 0 if and

only if x = 0; (2) ∥ ax ∥=| a |∥ x ∥; (3) ∥ x + y ∥≤∥ x ∥ + ∥ y ∥. An important

family of norm functions is given by the lp(1 ≤ p ≤ ∞) norms. For any real p ≥ 1,

the lp norm of a vector x = (x1, . . . , xn) ∈ Rn is

∥ x ∥p=

(
n∑

i=1

| xi |p
) 1

p

.

And the l∞ norm is

∥ x ∥∞= max
1≤i≤n

| xi | .
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Let m be a positive integer with 1 ≤ m ≤ n. Let α1, . . . , αm ∈ Rn be m R-linearly
independent vectors. A lattice in Rn is the set

L(α1, . . . , αm) =

{
m∑
i=1

aiαi | ai ∈ Z, 1 ≤ i ≤ m

}

of all integral linear combinations of α1, . . . , αm. The integers m and n are called

the rank and dimension of the lattice, respectively. When n = m, we say that the

lattice is full rank. A lattice in Rn is a discrete additive subgroup of it, and the

reverse is also true. See [2] for a proof of this fact.

Given a lattice L(α1, . . . , αm) in Rn, and a norm ∥ · ∥ on Rn, there are two famous

computational problems, i.e., the shortest vector problem (SVP) and the closest

vector problem (CVP). SVP is to find a nonzero lattice vector v ∈ L(α1, . . . , αm)

such that

∥ v ∥= min{∥ x ∥| 0 ̸= x ∈ L(α1, . . . , αm)}.

Given a target vector t ∈ Rn and a lattice L(α1, . . . , αm) in Rn. CVP is to find a

lattice vector v ∈ L(α1, . . . , αm) such that

∥ t− v ∥= min{∥ t− x ∥| x ∈ L(α1, . . . , αm)}.

Note that, since the zero vector is in fact the shortest vector in a lattice, SVP is to

find a second shortest vector in a lattice.

Lattices are important research objects in geometric number theory, see [7]. Al-

gorithmic studies of SVP and CVP can be found in [4]. Lattices in Euclidean spaces

have important applications in many areas, such as cryptology. The reader can eas-

ily find numerous literatures in recent cryptographic conference proceedings, such

as Crypto, Eurocrypt, Asiacrypt, etc.

We know that R is the completion of the field Q of rational numbers with respect

to the usual absolute value. Let p be a prime number, and let Qp be the completion

of Q with respect to the p-adic absolute value. Let n be a positive integer, and

let K be an extension field of Qp of degree n. We know that the p-adic absolute

value on Qp can be extended uniquely to K. In this paper, we define so-called p-

adic lattices in K, and consider the p-adic analogues of SVP and CVP in the local

field K. We find that, in contrast with lattices in Euclidean spaces, the situation

is completely different and interesting. The reason is that K not only is a vector

space of dimension n over Qp, but also itself is a field. However, Rn can be viewed

as a field only when n = 1, 2, 4. The case n = 2 is the field of complex numbers and

when n = 4, the field is non-commutative (i.e., Hamilton quaternions). This is the

famous Frobenius Theorem. We also develop relevant algorithms, indicating that

these problems are computable.

The paper is organized as follows. We give some necessary basic facts about

local fields in Section 2. We consider the p-adic analogues of the shortest vector
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problem and the closest vector problem in local fields in Sections 3,4, respectively.

We describe a simple relationship between the discriminant of a lattice and λ2 in

Section 5.

2. Basic facts about local fields

In this section, we recall some basic facts about local fields, for detailed study of

local fields, see [3, 1, 6].

Let p be a prime number. For x ∈ Q with x ̸= 0, write x = pt ab with t, a, b ∈ Z
and p - ab. Define | x |p= p−t and | 0 |p= 0. Then | · |p is a non-Archimedean

absolute value on Q. Namely, we have: (1) | x |p≥ 0 and | x |p= 0 if and only if

x=0; (2) | xy |p=| x |p| y |p; (3) | x+ y |p≤ max(| x |p, | y |p). If | x |p ̸=| y |p, then
| x+ y |p= max(| x |p, | y |p).

Let Qp be the completion of Q with respect to | · |p. Denote Zp = {x ∈
Qp || x |p≤ 1}. Zp is a discrete valuation ring, it has a unique nonzero principal

maximal ideal pZp and p is called a uniformizer of Qp. The unit group of Zp

is Z×
p = {x ∈ Qp || x |p= 1}. The residue class field Zp/pZp is a finite field

with p elements. We have Zp = {
∑∞

i=0 aip
i | ai ∈ {0, 1, 2, . . . , p − 1}, i ≥ 0} and

Qp = {
∑∞

i=j aip
i | ai ∈ {0, 1, 2, . . . , p − 1}, i ≥ j, j ∈ Z}. Zp is compact and Qp is

locally compact.

Let n be a positive integer, and let K be an extension field of Qp of degree n.

We fix some algebraic closure Qp of Qp and view K as a subfield of Qp. Such K

exists, for example, let K = Qp(α) with αn = p. Because Xn − p is an Eisenstein

polynomial over Qp, it is irreducible over Qp, so K has degree n over Qp. Further,

there are only finitely many extension fields of Qp of degree n contained in Qp, see

[5]. The p-adic absolute value | · |p on Qp can be extended uniquely to K, i.e., for

x ∈ K, we have | x |p=| NK/Qp
(x) |

1
n
p , where NK/Qp

is the norm map from K to

Qp. And K is complete with respect to | · |p. See [1] for a proof.

Denote OK = {x ∈ K || x |p≤ 1}. OK is also a discrete valuation ring, it has

a unique nonzero principal maximal ideal πOK and π is called a uniformizer of K.

OK is a free Zp-module of rank n. OK is compact and K is locally compact. The

unit group of OK is O×
K = {x ∈ K || x |p= 1}. The residue class field OK/πOK

is a finite extension of Zp/pZp. Call the positive integer f = [OK/πOK : Zp/pZp]

the residue field degree of K/Qp. As ideals in OK , we have pOK = πeOK . Call

the positive integer e the ramification index of K/Qp. We have n = [K : Qp] = ef .

When e = 1, the extension K/Qp is unramified, and when e = n, K/Qp is totally

ramified. Each element x of the multiplicative group K× of nonzero elements of K

can be written uniquely as x = uπt with u ∈ O×
K and t ∈ Z. We have p = uπe with

u ∈ O×
K , so | π |p= p−

1
e . The valuation group of K is

{| x |p| x ∈ K×} = p
Z
e .
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3. Longest vector problem in local fields

As in the previous section, let p be a prime number, and let K be an extension field

of Qp of degree n, where n is a positive integer. Let m be a positive integer with

1 ≤ m ≤ n. Let α1, . . . , αm ∈ K be m Qp-linearly independent vectors. A lattice

in K is the set

L(α1, . . . , αm) =

{
m∑
i=1

aiαi | ai ∈ Zp, 1 ≤ i ≤ m

}

of all Zp-linear combinations of α1, . . . , αm. The sequence of vectors α1, . . . , αm is

called a basis of the lattice L(α1, . . . , αm). The integers m and n are called the rank

and dimension of the lattice, respectively. When n = m, we say that the lattice is

full rank.

Lemma 3.1. The lattice L = L(α1, . . . , αm) is compact in K.

Proof. Since | · |p makes L a metric space, compactness is equivalent to sequential

compactness. We have therefore to show that every sequence {Aj}∞j=1 of elements

of L has a convergent subsequence. The proof applies the well-known “diagonal

process” to the representation

Aj =

m∑
i=1

a
(i)
j αi.

Since a
(i)
j ∈ Zp and Zp is compact, there is a convergent subsequence a

(1)
nj1 of a

(1)
j .

Also, there is a convergent subsequence a
(2)
nj2 of a

(2)
nj1 , there is a convergent subse-

quence a
(3)
nj3 of a

(3)
nj2 , and so on. Finally, we obtain convergent subsequences a

(i)
njm of

a
(i)
j for each 1 ≤ i ≤ m. Then

m∑
i=1

a(i)njm
αi

is a convergent subsequence of Aj .

For any element α =
∑m

i=1 aiαi ∈ L, since each ai ∈ Zp, we have

| α |p=|
m∑
i=1

aiαi |p≤ max
1≤i≤m

(| aiαi |p) ≤ max
1≤i≤m

(| αi |p).

This indicates that the length | α |p of any element of the p-adic lattice L is bounded

above. Since the valuation group of K is discrete, as a subset of K, the set of lengths

of elements of the lattice L is also discrete. So we have the following definition.



5

Definition 3.2. Let L = L(α1, . . . , αm) be a lattice in K. We define recursively a

sequence of positive real numbers: λ1, λ2, λ3, . . . as follows.

λ1 = max
1≤i≤m

(| αi |p)

λj+1 = max{| x |p| x ∈ L, | x |p< λj} for j ≥ 1.

We have λ1 > λ2 > λ3 > . . . and limj→∞ λj = 0. In fact, we have the following.

Lemma 3.3. Let L = L(α1, . . . , αm) be a lattice in K, and let 0 ̸= α ∈ L be any

nonzero element of the lattice. Then we have

p−
1
eλj ≥ λj+1 ≥ p−j | α |p for j ≥ 1,

where e is the ramification index for K/Qp.

Proof. Induction on j. Note that the valuation group of K is

{| x |p| x ∈ K×} = p
Z
e .

Definition 3.4. Given a lattice L = L(α1, . . . , αm) in K, the longest vector problem

(LVP) is to find a lattice vector v ∈ L such that | v |p= λ2.

Of course, the longest vector v is not unique, for, if u ∈ Z×
p , then uv is also a

longest vector in the lattice L.
Example 1. Put L = OK . Since any nonzero element α of OK can be written

uniquely as α = uπt with u ∈ O×
K and t ∈ Z, t ≥ 0, where π is a uniformizer of K.

So | π |p= λ2 and the uniformizer π is a longest vector in OK . Since uniformizers

are important for a local field K, so the LVP is significant.

Proposition 3.5. Given a lattice L = L(α1, . . . , αm) in K with | α1 |p≥| α2 |p≥
| α3 |p≥ · · · ≥| αm |p. If K/Qp is unramified, then, for j ≥ 0, pjα1 ∈ L satisfying

| pjα1 |p= λj+1 = p−jλ1.

Proof. Since the valuation group of K is pZ, the result follows.

The above proposition shows that the LVP is easy to solve for a unramified

extension K/Qp.

Theorem 3.6. Given a lattice L = L(α1, . . . , αm) in K. Fix an integer j ≥ 2.

There exists an algorithm to find a lattice vector vj ∈ L satisfying

| vj |p= λj .

The algorithm takes O(pm(j−1)) many p-adic absolute value computations of ele-

ments of K.
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Proof. Without loss of generality, we can assume | α1 |p≥| α2 |p≥| α3 |p≥ · · · ≥
| αm |p. Let α ∈ L be an arbitrary vector. Write

α =
m∑
i=1

biαi + pj−1β,

with bi ∈ Z, 0 ≤ bi ≤ pj−1 − 1, 1 ≤ i ≤ m and β ∈ L. Set

Sj =

{
m∑
i=1

biαi | bi ∈ Z, 0 ≤ bi ≤ pj−1 − 1, 1 ≤ i ≤ m

}∪
{pj−1α1}.

There are pm(j−1)+1 elements in Sj . By Lemma 3.3, we have | pj−1β |p≤| pj−1α1 |≤
λj . If |

∑m
i=1 biαi |p> λj , then | α |p=|

∑m
i=1 biαi + pj−1β |p=|

∑m
i=1 biαi |p. If

|
∑m

i=1 biαi |p≤ λj , then | α |p= |
∑m

i=1 biαi + pj−1β |p≤ λj . Hence there are

lattice vectors of length λ1, . . . , λj−1 in Sj . Suppose there is no lattice vector of

length λj in Sj . Then we have | pj−1α1 |< λj . If |
∑m

i=1 biαi |p< λj , then | α |p=
|
∑m

i=1 biαi + pj−1β |p< λj . Hence there is no lattice vector of length λj in L. It is
impossible. So there is a lattice vector of length λj in Sj . Hence vj can be taken

as the j-th longest vector in Sj . The assertion about the time of the algorithm is

obvious. We ignore the time of comparing.

We know, from the proof of the above theorem, that we can simultaneously find

out the values λ2, λ3, . . . , λj and the corresponding vectors v2, v3, . . . , vj . From the

proof of Theorem 3.6, the mentioned algorithm is a brute force searching algorithm.

We provide a numerical example.

Example 2. Let K = Q2(
3
√
2). Here p = 2 and n = 3. Let L = Zp + Zp

3
√
2 be

a lattice in K of rank 2. Here m = 2 and α1 = 1, α2 = 3
√
2. Since | α2 |2= 2−

1
3 , we

have λ1 = 1. We want to find λ3. Set

S3 = {i+ jα2 | 0 ≤ i, j ≤ 3}
∪

{4}.

Using NK/Q2
(i+ jα2) = i3+2j3, we can easily find out the 2-adic absolute value of

each element of S3. A calculation shows that λ2 = 2−
1
3 , λ3 = 2−1 and v2 = α2, v3 =

2.

4. Closest vector problem in local fields

As in the previous section, let p be a prime number, and let K be an extension field

of Qp of degree n, where n is a positive integer. Let m be a positive integer with

1 ≤ m ≤ n. Let L = L(α1, . . . , αm) be a lattice in K. In this section, we consider

the p-adic analogue of the closest vector problem in K. Suppose | α1 |p≥| α2 |p≥
| α3 |p≥ · · · ≥| αm |p.
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Given a target vector t ∈ K. Since the function

L −→ R, v 7−→| t− v |p

is continuous on the compact set L, it can take the minimum and maximum on L.
Set

µmin = min
v∈L

| t− v |p and µmax = max
v∈L

| t− v |p .

If t ∈ L, it is obvious that we have µmin = 0 and µmax = λ1. Here λ1 is the same as

in Definition 3.2. So we below assume t /∈ L. Hence µmin > 0. Since the valuation

group of K is discrete, the above distance function will take only finitely many

values. So we have the following definition.

Definition 4.1. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a

target vector. Define s positive real numbers µ1 > µ2 > µ3 > · · · > µs as follows,

where s is a positive integer.

{µ1, µ2, µ3, . . . , µs} = {| t− v |p| v ∈ L}.

So µmax = µ1 and µmin = µs.

If | t |p> λ1, since | t − v |p=| t |p, we have µmin = µmax =| t |p. So we below

assume | t |p≤ λ1.

Definition 4.2. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a

target vector with | t |p≤ λ1. The closest vector problem (CVP) is to find a lattice

vector v ∈ L such that

| t− v |p= µmin.

And the farthest vector problem (FVP) is to find a lattice vector v ∈ L such that

| t− v |p= µmax.

Proposition 4.3. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K −L be a

target vector with | t |p≤ λ1. Suppose | t |p ̸= λj for any j ≥ 1. Let j0 ≥ 1 be such

that λj0+1 <| t |p< λj0 . Then we have s = j0 + 1 and µi = λi for 1 ≤ i ≤ j0 and

µj0+1 =| t |p.

Proof. For any v ∈ L, we have | t − v |p= max(| t |p, | v |p). If | v |p≤ λj0+1, then

| t− v |p=| t |p. If | v |p≥ λj0 , then | t− v |p=| v |p. The result follows.

Theorem 4.4. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a

target vector with | t |p≤ λ1. Suppose | t |p ̸= λj for any j ≥ 1. There exists an

algorithm to find the values µi, 1 ≤ i ≤ s and the lattice vectors vi ∈ L such that

| t− vi |p= µi for 1 ≤ i ≤ s.

The algorithm takes O
((

λ1

|t|p

)mn)
many p-adic absolute value computations of el-

ements of K.
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Proof. By Lemma 3.3, λj+1 ≤ p−
1
eλj for j ≥ 1. Hence λj ≤ p−

j−1
e λ1. Let j0 ≥ 1 be

such that λj0+1 <| t |p< λj0 . We have | t |p< p−
j0−1

e λ1. Hence j0 < e logp

(
λ1

|t|p

)
+

1 ≤ n logp

(
λ1

|t|p

)
+ 1. Now the result follows from Proposition 4.3 and Theorem

3.6.

Example 3. Let L be as in Example 2. Suppose t = α2
2. Since | t |2= 2−

2
3 , we

see λ3 <| t |2< λ2. So s = 3 and µ1 = 1, µ2 = 2−
1
3 , µ3 = 2−

2
3 .

Theorem 4.5. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a

target vector with | t |p≤ λ1. Suppose | t |p= λj0 for some j0 ≥ 1. Then s ≥ j0
and there exists an algorithm to find the values µi, 1 ≤ i ≤ j0 and the lattice vectors

vi ∈ L such that

| t− vi |p= µi for 1 ≤ i ≤ j0.

The algorithm takes O
(
p−m

(
λ1

|t|p

)mn)
many p-adic absolute value computations of

elements of K.

Proof. Now by assumption | t |p= λj0 for some j0 ≥ 1. For v ∈ L with | v |p< λj0 ,

then | t−v |p= λj0 . For v ∈ L with | v |p> λj0 , then | t−v |p=| v |p. For v ∈ L with

| v |p= λj0 , then | t − v |p≤ λj0 . Hence s ≥ j0, and µi = λi for 1 ≤ i ≤ j0. From

the proof of Theorem 4.4, we have j0 < n logp

(
λ1

|t|p

)
+1. Since we can put vj0 = 0,

we only need to know the vectors vi ∈ L such that | vi |p= λi for 1 ≤ i ≤ j0 − 1,

the theorem follows from Theorem 3.6.

By the above Theorems 4.4 and 4.5, in any case, we always have µ1 = λ1. When

| t |p< λ1, we can put v1 = α1; when | t |p= λ1, we can put v1 = 0. So the FVP is

easy to solve.

Theorem 4.6. Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a

target vector with | t |p≤ λ1. Suppose | t |p= λj0 for some j0 ≥ 1. Then s ≥ j0
and there exists an algorithm to find the values µi, j0 < i ≤ s and the lattice vectors

vi ∈ L such that

| t− vi |p= µi for j0 < i ≤ s.

The algorithm terminates within finite steps.

Proof. For v ∈ L, write

v =
m∑
i=1

biαi + pj0β

with bi ∈ Z, 0 ≤ bi ≤ pj0 − 1 for 1 ≤ i ≤ m and β ∈ L. By Lemma 3.3, we have

| pj0β |p≤ λj0+1. Set α =
∑m

i=1 biαi. If | α |p> λj0 , then we have | t − v |p=
| t − α − pj0β |p=| α |p. If | α |p< λj0 , then we have | t − v |p= | t − α − pj0β |p=
| t |p= λj0 . If | α |p= λj0 , then we have | t− v |p= | t− α− pj0β |p≤ λj0 .
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Denote B1 the set of such α with | α |p= λj0 . B1 is a non-empty finite set. Set

η1 = min{| t− α |p| α ∈ B1}.

Then we have η1 ≤ λj0 . If η1 > p−j0λ1, since | pj0β |p≤ p−j0λ1, we have µmin = η1.

And

{µ1, . . . , µs} = {λ1, . . . , λj0}
∪

{| t− α |p| α ∈ B1}.

We have done. If η1 ≤ p−j0λ1, assume η1 > p−j1λ1 with some integer j1 > j0. For

v ∈ L, write

v =

m∑
i=1

biαi + pj1β

with bi ∈ Z, 0 ≤ bi ≤ pj1 −1 for 1 ≤ i ≤ m and β ∈ L. Repeating the above process.

Set α =
∑m

i=1 biαi. We need only to consider the case | α |p= λj0 . Denote B2 the

set of such α with | α |p= λj0 . B2 is a non-empty finite set. Set

η2 = min{| t− α |p| α ∈ B2}.

Since B1 is a subset of B2, we have η2 ≤ η1. If η2 > p−j1λ1, since | pj1β |p≤ p−j1λ1,

we have µmin = η2. And

{µ1, . . . , µs} = {λ1, . . . , λj0}
∪

{| t− α |p| α ∈ B2}.

We have done. If η2 ≤ p−j1λ1, assume η2 > p−j2λ1 with some integer j2 > j1. And

so on. Since µmin > 0, there is some integer k ≥ 1 such that µmin > p−jk−1λ1.

Hence ηk ≥ µmin > p−jk−1λ1. So ηk = µmin. And

{µ1, . . . , µs} = {λ1, . . . , λj0}
∪

{| t− α |p| α ∈ Bk},

where

Bk =

{
α =

m∑
i=1

biαi | bi ∈ Z, 0 ≤ bi ≤ pjk−1 − 1 for 1 ≤ i ≤ m, | α |p= λj0

}
.

We have done.

Example 4. We provide two toy examples to explain that both cases s = j0 and

s > j0 will happen. In these two examples, let L = Zp, i.e., m = 1 and α1 = 1. We

have λ1 = 1. (1) Let K = Q2(ζ), where ζ is a primitive 3-th root of unity. K/Q2

is unramified, see [1]. Here n = 2 and p = 2. Suppose t = ζ. Since | t |2= 1, we

have j0 = 1. Hence B1 = {1}. Since | t− 1 |2= 1, we have η1 = 1. So s = 1, µ1 = 1.

(2) Let K = Q3(ζ), where ζ is a primitive 3-th root of unity. Here n = 2 and

p = 3. Suppose t = ζ. Since | t |3= 1, we have j0 = 1. Hence B1 = {1, 2}. Since

| t − 1 |3= 3−
1
2 and | t − 2 |3= 1, we have η1 = 3−

1
2 . Since η1 > p−j0λ1, we have

s = 2, µ1 = 1, µ2 = 3−
1
2 .
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5. Discriminants and λ2

Let K be an extension of Qp of degree n. Let L = L(α1, . . . , αn) be a lattice in K

of full rank. Let σi : K ↪→ Qp(1 ≤ i ≤ n) be the n Qp-embeddings of K. Recall the

discriminant of α1, . . . , αn is defined as

D(α1, . . . , αn) = (det(σi(αj))i,j)
2 ∈ Q×

p .

For another basis β1, . . . , βn of L, we have D(β1, . . . , βn) = uD(α1, . . . , αn) with

u ∈ (Z×
p )

2. So | D(α1, . . . , αn) |p is an invariant of the lattice L. Define

D(L) =| D(α1, . . . , αn) |p .

Theorem 5.1. Let L = L(α1, . . . , αn) be a lattice in K of full rank. Let m be the

number of vectors amongst α1, . . . , αn whose length is λ1. Then we have

D(L) ≤ λ2m
1 λ

2(n−m)
2 .

Proof. It is obvious from the definition of the discriminant D(α1, . . . , αn).

6. Remarks

All the above results can be easily generalized to the general setting of local fields.

A field k is a local field, we mean that k is complete with respect to a discrete

valuation and has a finite residue class field. Let k be a local field, and let K/k be

a finite extension. Then K is also a local field. We can define lattices in K. And

all the previous results still hold in this general setting.

The results in this paper are only of theoretic interest in nature, we do not

implement the mentioned algorithms.
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