25,249 research outputs found

    Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs

    Get PDF
    In this paper we study weighted distances in scale-free spatial network models: hyperbolic random graphs (HRG), geometric inhomogeneous random graphs (GIRG) and scale-free percolation (SFP). In HRGs, n=Θ(eR/2)n=\Theta(\mathrm{e}^{R/2}) vertices are sampled independently from the hyperbolic disk with radius RR and two vertices are connected either when they are within hyperbolic distance RR, or independently with a probability depending on the hyperbolic distance. In GIRGs and SFP, each vertex is given an independent weight and location from an underlying measured metric space and Zd\mathbb{Z}^d, respectively, and two vertices are connected independently with a probability that is a function of their distance and weights. We assign i.i.d. weights to the edges of the random graphs and study the weighted distance between two uniformly chosen vertices. In SFP, we study the weighted distance from the origin of vertex-sequences with norm tending to infinity. In particular, we study the case when the parameters are so that the degree distribution in the graph follows a power law with exponent τ(2,3)\tau\in(2,3) (infinite variance), and the edge-weight distribution is such that it produces an explosive age-dependent branching process with power-law offspring distribution. We show that in all three models, typical distances within the giant/infinite component converge in distribution, solving an open question in [Explosion and distances in scale-free percolation (2017)]. The main tools of our proof are to couple the models to infinite versions, to follow the shortest paths to infinity and to connect these paths using weight-dependent percolation on the graphs: delete edges attached to vertices with higher weight with higher probability. We realise this using the edge-weights: only short edges connected to high weight vertices will stay, yielding arbitrarily short upper bounds for the connections.Comment: 49 pages, 4 figure

    The trace-reinforced ants process does not find shortest paths

    Full text link
    In this paper, we study a probabilistic reinforcement-learning model for ants searching for the shortest path(s) between their nest and a source of food. In this model, the nest and the source of food are two distinguished nodes NN and FF in a finite graph G\mathcal G. The ants perform a sequence of random walks on this graph, starting from the nest and stopped when first hitting the source of food. At each step of its random walk, the nn-th ant chooses to cross a neighbouring edge with probability proportional to the number of preceding ants that crossed that edge at least once. We say that {\it the ants find the shortest path} if, almost surely as the number of ants grow to infinity, almost all the ants go from the nest to the source of food through one of the shortest paths, without loosing time on other edges of the graph. Our contribution is three-fold: (1) We prove that, if G\mathcal G is a tree rooted at NN whose leaves have been merged into node FF, and with one edge between NN and FF, then the ants indeed find the shortest path. (2) In contrast, we provide three examples of graphs on which the ants do not find the shortest path, suggesting that in this model and in most graphs, ants do not find the shortest path. (3) In all these cases, we show that the sequence of normalised edge-weights converge to a {\it deterministic} limit, despite a linear-reinforcement mechanism, and we conjecture that this is a general fact which is valid on all finite graphs. To prove these results, we use stochastic approximation methods, and in particular the ODE method. One difficulty comes from the fact that this method relies on understanding the behaviour at large times of the solution of a non-linear, multi-dimensional ODE

    The trace-reinforced ants process does not find shortest paths

    Get PDF
    In this paper, we study a probabilistic reinforcement-learning model for ants searching for the shortest path(s) between their nest and a source of food. In this model, the nest and the source of food are two distinguished nodes NN and FF in a finite graph G\mathcal G. The ants perform a sequence of random walks on this graph, starting from the nest and stopped when first hitting the source of food. At each step of its random walk, the nn-th ant chooses to cross a neighbouring edge with probability proportional to the number of preceding ants that crossed that edge at least once. We say that {\it the ants find the shortest path} if, almost surely as the number of ants grow to infinity, almost all the ants go from the nest to the source of food through one of the shortest paths, without loosing time on other edges of the graph. Our contribution is three-fold: (1) We prove that, if G\mathcal G is a tree rooted at NN whose leaves have been merged into node FF, and with one edge between NN and FF, then the ants indeed find the shortest path. (2) In contrast, we provide three examples of graphs on which the ants do not find the shortest path, suggesting that in this model and in most graphs, ants do not find the shortest path. (3) In all these cases, we show that the sequence of normalised edge-weights converge to a {\it deterministic} limit, despite a linear-reinforcement mechanism, and we conjecture that this is a general fact which is valid on all finite graphs. To prove these results, we use stochastic approximation methods, and in particular the ODE method. One difficulty comes from the fact that this method relies on understanding the behaviour at large times of the solution of a non-linear, multi-dimensional ODE

    Faster Replacement Paths

    Full text link
    The replacement paths problem for directed graphs is to find for given nodes s and t and every edge e on the shortest path between them, the shortest path between s and t which avoids e. For unweighted directed graphs on n vertices, the best known algorithm runtime was \tilde{O}(n^{2.5}) by Roditty and Zwick. For graphs with integer weights in {-M,...,M}, Weimann and Yuster recently showed that one can use fast matrix multiplication and solve the problem in O(Mn^{2.584}) time, a runtime which would be O(Mn^{2.33}) if the exponent \omega of matrix multiplication is 2. We improve both of these algorithms. Our new algorithm also relies on fast matrix multiplication and runs in O(M n^{\omega} polylog(n)) time if \omega>2 and O(n^{2+\eps}) for any \eps>0 if \omega=2. Our result shows that, at least for small integer weights, the replacement paths problem in directed graphs may be easier than the related all pairs shortest paths problem in directed graphs, as the current best runtime for the latter is \Omega(n^{2.5}) time even if \omega=2.Comment: the current version contains an improved resul

    Fully dynamic all-pairs shortest paths with worst-case update-time revisited

    Full text link
    We revisit the classic problem of dynamically maintaining shortest paths between all pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions of nodes and their incident edges. We give worst-case guarantees on the time needed to process a single update (in contrast to related results, the update time is not amortized over a sequence of updates). Our main result is a simple randomized algorithm that for any parameter c>1c>1 has a worst-case update time of O(cn2+2/3log4/3n)O(cn^{2+2/3} \log^{4/3}{n}) and answers distance queries correctly with probability 11/nc1-1/n^c, against an adaptive online adversary if the graph contains no negative cycle. The best deterministic algorithm is by Thorup [STOC 2005] with a worst-case update time of O~(n2+3/4)\tilde O(n^{2+3/4}) and assumes non-negative weights. This is the first improvement for this problem for more than a decade. Conceptually, our algorithm shows that randomization along with a more direct approach can provide better bounds.Comment: To be presented at the Symposium on Discrete Algorithms (SODA) 201
    corecore