4,548 research outputs found

    AND and/or OR: Uniform Polynomial-Size Circuits

    Get PDF
    We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the norm for Boolean circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its input variables. Determining that subset amounts to solving a number of reachability questions on a polynomial-size directed graph (which input gates are connected to the output gate?), taken from a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability problem can be solved, by say, uniform AC^0 circuits (constant depth, polynomial-size, AND, OR, NOT gates). This is one reason why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural and worthy of study. Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND circuits, in terms of known uniform machine-based complexity classes. In particular, we consider the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety of reduction types. We give upper and lower bounds on the computational power of these language classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then, some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.Comment: In Proceedings MCU 2013, arXiv:1309.104

    On One Query Self-Reducible Sets

    Get PDF

    Sparse reduces conjunctively to tally

    Get PDF

    Polynomial-time reducibilities and ā€œalmost allā€ oracle sets

    Get PDF
    AbstractIt is shown for every k>0 and for almost every tally setT, {A|A ā©½Pkāˆ’ttT} ā‰  {A|A ā©½P(k+1)āˆ’ttT}. In contrast, it is shown that for every set A, the following holds: (a) for almost every set B,A ā©½ Pm B if and only if A ā©½ P(logn)āˆ’T B; and (b) for almost every set B, A ā©½Ptt B if and only ifA ā©½PTB

    On symmetric differences of NP-hard sets with weakly P-selective sets

    Get PDF
    AbstractThe symmetric differences of NP-hard sets with weakly-P-selective sets are investigated. We show that if there exist a weakly-P-selective set A and an NP-ā©½Pm-hard set H such that H - AĻµPbtt(sparse) and A ā€” HĻµPm(sparse) then P = NP. So no NP-ā©½Pm-hard set has sparse symmetric difference with any weakly-P-selective set unless P = NP. The proof of our main result is an interesting application of the tree prunning techniques (Fortune 1979; Mahaney 1982). In addition, we show that there exists a P-selective set which has exponentially dense symmetric difference with every set in Pbtt(sparse)

    Classes of representable disjoint NP-pairs

    Get PDF
    For a propositional proof system P we introduce the complexity class of all disjoint -pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make canonical -pairs associated with these proof systems hard or complete for . Moreover, we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for and the reductions between the canonical pairs exist
    • ā€¦
    corecore