5,441 research outputs found

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore