2,046 research outputs found

    Submodular Minimization Under Congruency Constraints

    Full text link
    Submodular function minimization (SFM) is a fundamental and efficiently solvable problem class in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints, i.e., optimizing only over sets of odd (or even) cardinality. Parity constraints capture classical combinatorial optimization problems like the odd-cut problem, and they are a key tool in a recent technique to efficiently solve integer programs with a constraint matrix whose subdeterminants are bounded by two in absolute value. We show that efficient SFM is possible even for a significantly larger class than parity constraints, by introducing a new approach that combines techniques from Combinatorial Optimization, Combinatorics, and Number Theory. In particular, we can show that efficient SFM is possible over all sets (of any given lattice) of cardinality r mod m, as long as m is a constant prime power. This covers generalizations of the odd-cut problem with open complexity status, and with relevance in the context of integer programming with higher subdeterminants. To obtain our results, we establish a connection between the correctness of a natural algorithm, and the inexistence of set systems with specific combinatorial properties. We introduce a general technique to disprove the existence of such set systems, which allows for obtaining extensions of our results beyond the above-mentioned setting. These extensions settle two open questions raised by Geelen and Kapadia [Combinatorica, 2017] in the context of computing the girth and cogirth of certain types of binary matroids

    Query-Efficient Locally Decodable Codes of Subexponential Length

    Full text link
    We develop the algebraic theory behind the constructions of Yekhanin (2008) and Efremenko (2009), in an attempt to understand the ``algebraic niceness'' phenomenon in Zm\mathbb{Z}_m. We show that every integer m=pq=2t−1m = pq = 2^t -1, where pp, qq and tt are prime, possesses the same good algebraic property as m=511m=511 that allows savings in query complexity. We identify 50 numbers of this form by computer search, which together with 511, are then applied to gain improvements on query complexity via Itoh and Suzuki's composition method. More precisely, we construct a 3⌈r/2⌉3^{\lceil r/2\rceil}-query LDC for every positive integer r<104r<104 and a ⌊(3/4)51⋅2r⌋\left\lfloor (3/4)^{51}\cdot 2^{r}\right\rfloor-query LDC for every integer r≥104r\geq 104, both of length NrN_{r}, improving the 2r2^r queries used by Efremenko (2009) and 3⋅2r−23\cdot 2^{r-2} queries used by Itoh and Suzuki (2010). We also obtain new efficient private information retrieval (PIR) schemes from the new query-efficient LDCs.Comment: to appear in Computational Complexit

    A Class of P,TP,T-Invariant Topological Phases of Interacting Electrons

    Full text link
    We describe a class of parity- and time-reversal-invariant topological states of matter which can arise in correlated electron systems in 2+1-dimensions. These states are characterized by particle-like excitations exhibiting exotic braiding statistics. PP and TT invariance are maintained by a `doubling' of the low-energy degrees of freedom which occurs naturally without doubling the underlying microscopic degrees of freedom. The simplest examples have been the subject of considerable interest as proposed mechanisms for high-TcT_c superconductivity. One is the `doubled' version (i.e. two opposite-chirality copies) of the U(1) chiral spin liquid. The second example corresponds to Z2Z_2 gauge theory, which describes a scenario for spin-charge separation. Our main concern, with an eye towards applications to quantum computation, are richer models which support non-Abelian statistics. All of these models, richer or poorer, lie in a tightly-organized discrete family. The physical inference is that a material manifesting the Z2Z_2 gauge theory or a doubled chiral spin liquid might be easily altered to one capable of universal quantum computation. These phases of matter have a field-theoretic description in terms of gauge theories which, in their infrared limits, are topological field theories. We motivate these gauge theories using a parton model or slave-fermion construction and show how they can be solved exactly. The structure of the resulting Hilbert spaces can be understood in purely combinatorial terms. The highly-constrained nature of this combinatorial construction, phrased in the language of the topology of curves on surfaces, lays the groundwork for a strategy for constructing microscopic lattice models which give rise to these phases.Comment: Typos fixed, references adde

    Unconventional Fusion and Braiding of Topological Defects in a Lattice Model

    Full text link
    We demonstrate the semiclassical nature of symmetry twist defects that differ from quantum deconfined anyons in a true topological phase by examining non-abelian crystalline defects in an abelian lattice model. An underlying non-dynamical ungauged S3-symmetry labels the quasi-extensive defects by group elements and gives rise to order dependent fusion. A central subgroup of local Wilson observables distinguishes defect-anyon composites by species, which can mutate through abelian anyon tunneling by tuning local defect phase parameters. We compute a complete consistent set of primitive basis transformations, or F-symbols, and study braiding and exchange between commuting defects. This suggests a modified spin-statistics theorem for defects and non-modular group structures unitarily represented by the braiding S and exchange T matrices. Non-abelian braiding operations in a closed system represent the sphere braid group projectively by a non-trivial central extension that relates the underlying symmetry.Comment: 44 pages, 43 figure
    • …
    corecore