84,683 research outputs found

    Sequential Bayesian inference for static parameters in dynamic state space models

    Full text link
    A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is based on the observation that many dynamic state space models have a relatively small number of static parameters (or hyper-parameters), so that in principle the posterior can be computed and stored on a discrete grid of practical size which can be tracked dynamically. Further to this, this approach is able to use any existing methodology which computes the filtering and prediction distributions of the state process. Kalman filter and its extensions to non-linear/non-Gaussian situations have been used in this paper. This is illustrated using several applications: linear Gaussian model, Binomial model, stochastic volatility model and the extremely non-linear univariate non-stationary growth model. Performance has been compared to both existing on-line method and off-line methods

    A partially linearized sigma point filter for latent state estimation in nonlinear time series models

    Get PDF
    A new technique for the latent state estimation of a wide class of nonlinear time series models is proposed. In particular, we develop a partially linearized sigma point filter in which random samples of possible state values are generated at the prediction step using an exact moment matching algorithm and then a linear programming-based procedure is used in the update step of the state estimation. The effectiveness of the new ¯ltering procedure is assessed via a simulation example that deals with a highly nonlinear, multivariate time series representing an interest rate process

    Deep Recurrent Survival Analysis

    Full text link
    Survival analysis is a hotspot in statistical research for modeling time-to-event information with data censorship handling, which has been widely used in many applications such as clinical research, information system and other fields with survivorship bias. Many works have been proposed for survival analysis ranging from traditional statistic methods to machine learning models. However, the existing methodologies either utilize counting-based statistics on the segmented data, or have a pre-assumption on the event probability distribution w.r.t. time. Moreover, few works consider sequential patterns within the feature space. In this paper, we propose a Deep Recurrent Survival Analysis model which combines deep learning for conditional probability prediction at fine-grained level of the data, and survival analysis for tackling the censorship. By capturing the time dependency through modeling the conditional probability of the event for each sample, our method predicts the likelihood of the true event occurrence and estimates the survival rate over time, i.e., the probability of the non-occurrence of the event, for the censored data. Meanwhile, without assuming any specific form of the event probability distribution, our model shows great advantages over the previous works on fitting various sophisticated data distributions. In the experiments on the three real-world tasks from different fields, our model significantly outperforms the state-of-the-art solutions under various metrics.Comment: AAAI 2019. Supplemental material, slides, code: https://github.com/rk2900/drs
    corecore