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INFERRING THE RESIDUAL WAITING TIME
FOR BINARY STATIONARY TIME SERIES

Gusztáv Morvai and Benjamin Weiss

For a binary stationary time series define σn to be the number of consecutive ones up to
the first zero encountered after time n, and consider the problem of estimating the conditional
distribution and conditional expectation of σn after one has observed the first n outputs. We
present a sequence of stopping times and universal estimators for these quantities which are
pointwise consistent for all ergodic binary stationary processes. In case the process is a renewal
process with zero the renewal state the stopping times along which we estimate have density
one.
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1. INTRODUCTION AND RESULTS

Let {Xn} be a binary-valued stationary and ergodic time series. For conciseness sake, we
will denote Xj

i = (Xi, . . . , Xj) and also use this notation for i = −∞ and j = ∞. Our
interest is in the residual waiting time to the state 0 given some previous observations,
in particular given Xn

0 .
The “waiting time” is often used for the time between successive occurrences of a

fixed state. For this reason we add the adjective “residual” when we want to describe
the time until the next occurrence of 0, this is sometimes called the entrance time to 0.

Define the residual waiting time σi as the length of runs of 1’s starting at position i.
Formally put

σi = max{0 ≤ l : Xj = 1 for i < j ≤ i+ l}. (1)

Our goal is to estimate both the conditional distribution of σn given {Xn
0 } and also the

conditional expectation, E(σn|Xn
0 ), without prior knowledge of the distribution function

of the process. In principle, we can learn something about the finite distributions of the
unknown process that is being observed from the observations of Xn

0 but it is somewhat
problematic to use this information to estimate the future which also depends on these
same observations. If we would be content with convergence in probability, then simple
averaging to obtain estimates of the finite distributions, usually suffices. However if
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we raise our sights and try to obtain consistent estimates with probability one then
more elaborate schemes are needed. In fact for the class of all ergodic processes even
the estimation of the conditional expectation of Xn+1 given Xn

0 cannot be carried out
universally, i. e. without any knowledge of the processs, cf. [5, 12] and [1] . The residual
waiting time until the occurrence of the next zero requires looking ahead on unbounded
number of steps – and a fortiori cannot be universally estimated. To get positive results
we give up on trying to estimate at all time instants n, and develop stopping times which
tell us when the conditions are favourable for us to make on estimate – but we will insist
on almost sure consistency.

In our recent paper [11] we gave stopping time estimates for the conditional expec-
tation of a function f(Xn+1) of the next observation givenXn

0 in case the process takes
values from a countably infinite alphabet. These estimates were shown to be almost
surely eventually consistent provided that the conditional distribution of X0 given X−1

−∞
was almost surely continuous. In the present paper we will treat arbitrary stationary
ergodic {0, 1} valued process but focus on the residual waiting time until the next 0 oc-
curs. For this random variable we will consistently estimate its conditional expectation
and its probability distribution.

Restricting to a smaller class of processes, the binary renewal processes with zero the
renewal state, enables us to give estimation schemes that are much better. In fact we
will use two schemes – one adapted to general processes and one to the renewal process
– and a test which will decide for us at each step which scheme should be applied. For
renewal processes the stopping times will have density one – but for general processes
they will, of necessity, be much rarer.

Here is the first auxiliary algorithm. It is constructed so that if the process is a renewal
process with renewal state 0 then it will give a consistent estimator for the conditional
expectation of the residual waiting time. In case of binary renewal processes (with
renewal state 0) if a zero occurs then the expected time depends on the location of the
zero and so we introduce the notation:

τn(Xn
−∞) = min{t ≥ 0 : Xn−t = 0}. (2)

If a zero occurs in Xn
0 then τn(Xn

−∞) ≤ n and so it depends only on Xn
0 and so we

will also write for τn(Xn
−∞), τn(Xn

0 ) in this case. We will ensure that we will use the
notation τn(Xn

0 ) only in the case Xn
0 will contain at least one zero.

Define ψ as the position of the first zero, that is,

ψ = min{t ≥ 0 : Xt = 0}. (3)

In order to reduce our assumption E(|σ0|α) < ∞ in [10] from α > 2 to α > 1 a
slightly more involved scheme of stopping times is needed.

Let 0 < δ < 1 be arbitrary. First define the stopping times ξ∗n as ξ∗0 = ψ and for n ≥ 1,

ξ∗n = min
{
t > ξ∗n−1 : ∃i ∈ (ψ, log t) such that τ(Xi

0) = τ(Xt
0) and∣∣∣{log t ≤ j < 2blog tc : τ(Xj

0) = τ(Xt
0)

}∣∣∣ ≥ 2blog tc(1−δ)
}
. (4)
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(Note that the stopping time refer to the natural filtration and all logarithms are to the
base 2.) Put

κ∗n = min
{
K :

∣∣∣{blog ξ∗nc < j ≤ K : τ(Xj
0) = τ(Xξ∗n

0 )
}∣∣∣ = d2blog ξ∗nc(1−δ)e

}
. (5)

Note that κ∗n < 2blog ξ∗nc. As in [9], for n > 0, define our estimator h∗n(X0, . . . , Xξ∗n) at
time ξ∗n as

h∗n(X0, . . . , Xξ∗n
) =

1
d2blog ξ∗nc(1−δ)e

κ∗n∑
i=blog ξ∗nc+1

I{τ(Xi
0)=τ(X

ξ∗n
0 )}σi. (6)

Note that h∗n(X0, . . . , Xξ∗n
) will estimate the value E(σξ∗n

|Xξ∗n
0 ) consistently in case the

process is a renewal process. Notice that κ∗n ensures that we take into consideration
exactly d2blog ξ∗nc(1−δ)e pieces of occurrences. The above formula is simply the average of
the residual waiting times that we have already observed in the data segment Xκ∗n

blog ξ∗nc+1

when we were at the same value of τ as we see at time ξ∗n. Note that as long as
2m ≤ ξ∗n < 2m+1 the estimator h∗n(X0, . . . , Xξ∗n) is not refreshed. Keeping the same
estimate for many values of n enables us to use weaker moment assumptions than in
[10] since the number of unfavorable events that we have to consider is reduced.

In a similar fashion we can define the average of the number of times that the residual
waiting time assumed a fixed value and this will provide us with an estimator for the
entire conditional distribution of σn. Namely, define q̂∗l (X0, . . . , Xξ∗n) for each l as

q̂∗l (X0, . . . , Xξ∗n) =
1

d2blog ξ∗nc(1−δ)e

κ∗n∑
i=blog ξ∗nc+1

In
τ(Xi

0)=τ(X
ξ∗n
0 ),σi=l

o. (7)

Note that q̂∗l (X0, . . . , Xξ∗n) is a probability distribution on the nonnegative integers and
neither h∗n, q̂∗l (X0, . . . , Xξ∗n) nor ξ∗n depend on α.

Now we define the second type of auxiliary algorithms which will work for general
(not necessarily renewal) processes, cf [10].

We define the stopping times {ηn}. (The event {ηn = s} will be measurable with
respect to the sigma-algebra generated by Xs

0 .) Set η0 = 0. For n = 1, 2, . . ., define ηn

recursively. Let
ηn = ηn−1 + min{t > 0 : Xηn−1+t

t = X
ηn−1
0 }. (8)

Note that by ergodicity, the word Xηn−1
0 will appear again with probability one and so ηn

is finite almost surely. By construction, ηn ≥ n and it is a stopping time on X0, X1, . . . .
The nth estimate mn for E(σηn |X

ηn

0 ) is defined as

mn(X0, . . . , Xηn) =
1
n

n−1∑
j=0

σηjI{σηj
≤ηj+1−ηj} (9)
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and q̂l(X0, . . . , Xηn) for P (σηn = l|Xηn

0 ) is defined as

q̂l(X0, . . . , Xηn
) =

1
n

n−1∑
j=0

I{σηj
=l,σηj

≤ηj+1−ηj}. (10)

Observe that both mn and q̂l(X0, . . . , Xηn) depend solely on Xηn

0 .

Now we define our final scheme. This will involve a test to determine whether or not
the process that we are observing is indeed a renewal process and tell us which of the
auxiliary algorithms we should be using. Define the empirical conditional distributions
by

p̂n(0|z0
−k) =

∣∣{k ≤ t ≤ n− 1 : Xt+1
t−k = (z0

−k, 0)}
∣∣∣∣{k ≤ t ≤ n− 1 : Xt

t−k = z0
−k}

∣∣ . (11)

where 0/0 is defined as 0. These empirical distributions are functions of Xn
0 , but we

suppress this dependence to keep the notation manageable.

Define Xk,i to be the set of words in {0, 1}k+i+1 whose suffix consists of 01k (where 1k

stands for k pieces of 1’s) and then for a fixed 0 < γ < 1 define Sn
k,i as

Sn
k,i =

{
x0
−k−i ∈ Xk,i :

∣∣{k + i ≤ t ≤ n− 1 : Xt
t−k−i = x0

−k−i}
∣∣ > n1−γ

}
. (12)

These are the strings which occur sufficiently often so that we can rely on their empirical
distribution.

Define
∆̂n = max

0≤k≤n
max

1≤i≤n
max

z0
−k−i∈S

n
k,i

∣∣p̂n(0|z0
−k)− p̂n(0|z0

−k−i)
∣∣ . (13)

(Note that the maximum over an empty set is considered to be zero.) For a non renewal
process we will have that

lim inf
n→∞

∆̂n > 0 almost surely

while for a renewal process we will be able to give a definite rate of convergence to zero
of this estimator. This motivates the stopping times {λn} along which we will estimate.

Set λ0 = 0 and for n ≥ 1 define

λn = min
{
ηmin{i:∆̂ηi

>η−β
i ,ηi>λn−1}, ξ

∗
min{i:∆̂ξ∗

i
≤(ξ∗i )−β ,ξ∗i >λn−1}

}
. (14)

The nth estimate fn is defined as

fn(Xλn
0 ) (15)

=

{
hi(X

ξ∗i
0 ), if ∆̂λn ≤ λ−β

n and λn = ξ∗i for some i
mi(X

ηi

0 ), if ∆̂λn > λ−β
n and λn = ηi for some i
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and the nth estimate ql(X0, . . . , Xλn) is defined as

ql(Xλn
0 ) (16)

=

{
q̂∗l (Xξ∗i

0 ), if ∆̂λn ≤ λ−β
n and λn = ξ∗i for some i

q̂l(X
ηi

0 ), if ∆̂λn > λ−β
n and λn = ηi for some i.

For our proof of the theorem we will need some moment condition on the residual
waiting time. For more details on the necessity of some moment condition see Theorem 4
in Morvai and Weiss [9]. In our previous paper [10] we considered only the problem of
estimating the conditional expectation of the residual waiting time and our condition
α > 2 in that paper is stronger than the condition α > 1 used here.

Theorem. Let {Xn} be a binary-valued stationary and ergodic time series. Assume
E(|σ0|α) < ∞ for some α > 1. Let 0 < γ < 1, 0 < β < 1−γ

2 , 0 < δ < 1
3 be arbitrary.

Then almost surely
lim

n→∞

∣∣∣fn(Xλn
0 )− E(σλn

|Xλn
0 )

∣∣∣ = 0 (17)

and

lim
n→∞

∞∑
l=0

∣∣∣ql(X0, . . . , Xλn
)− P (σλn

= l|Xλn
0 ))

∣∣∣ = 0. (18)

If in addition the process is a binary renewal process then almost surely,

lim
n→∞

λn

n
= 1. (19)

Remark 1. Note that neither fn, ql(X0, . . . , Xλn) nor λn depend on α.

Remark 2. If the process is not a renewal process then (17) and (18) hold for α = 1,
(for the backward scheme cf. Algoet [1]).

2. PROOF OF THE THEOREM

The proof of theorem will be divided into several steps. The first few steps construct
another version of the stochastic process. It plays an important role in analyzing the
estimators that are consistent for any ergodic binary process.

We construct two schemes – one for general stationary processes and a more efficient
one designed for renewal processes. One of these schemes is based on universal so called
“backward schemes” which provide estimators for functions of future X∞

0 given that one
learns more and more of the past. The general backward scheme that we use is closely
related to the one used by Algoet [1]. To apply this we first construct an auxiliary process
– this occupies steps 0 – 3. In step 45 we show the consistency of the general scheme. In
step 6 we show the consistency of schemes for renewal processes. Step 7 shows that our
test for deciding which of the two schemes should be applied is eventually correct, and
finally step 8 gives the proof of the theorem.
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Step 0. We define some auxiliary processes.

It will be useful to define {X̂(k)
n }∞n=−∞ for k ≥ 0 as follows. Let

X̂
(k)
−n = Xηk−n for −∞ < n <∞.

For an arbitrary stationary time series {Yn}, let η̂0(Y 0
−∞) = 0 and for n ≥ 1 define

η̂n(Y 0
−∞) = η̂n−1(Y 0

−∞)−min{t > 0 : Y −t
η̂n−1−t = Y 0

η̂n−1
}.

Let T denote the left shift operator, that is, (Tx∞−∞)i = xi+1. It is easy to see that if
ηn(x∞−∞) = l then η̂n(T lx∞−∞) = −l.
Define the time series {X̃n}0

n=−∞ as

X̃0
η̂k(X̃0

−∞)
= Xηk

0 for k ≥ 0.

Since Xηk+1
ηk+1−ηk

= Xηk

0 process {X̃n}0
n=−∞ is well defined.

Step 1. We show that for arbitrary k ≥ 0, the time series {X̂(k)
n }∞n=−∞ and {Xn}∞n=−∞

have identical distribution.

It is enough to show that for all k ≥ 0, m ≥ n ≥ 0, and Borel set F ⊆ {0, 1}n+1,

P ((X̂(k)
m−n, . . . , X̂

(k)
m ) ∈ F ) = P (Xm

m−n ∈ F ).

This is immediate by stationarity of {Xn} and by the fact that for all k ≥ 0, m ≥ n ≥ 0,
l ≥ 0, F ⊆ {0, 1}n+1,

T l{Xηk+m
ηk+m−n ∈ F, ηk = l} = {Xm

m−n ∈ F, η̂k(X0
−∞) = −l}.

Step 2. We show that for k ≥ 0, almost surely,

η̂k(. . . , X̂(k)
−1 , X̂

(k)
0 ) = η̂k(X̃0

−∞)

and
X̃0

η̂k(X̃0
−∞)

= X̂
(k)

η̂k(...,X̂
(k)
−1 ,X̂

(k)
0 )

, . . . , X̂
(k)
0 .

This statement follows immediately from Step 0.

Step 3. We show that the distributions of {X̃n}0
n=−∞ and {Xn}0

n=−∞ are the same.

This is immediate from Step 1 and Step 2.

The time series {X̃n}0
n=−∞ is stationary, since {Xn}0

n=−∞ is stationary, and it can be
extended to be a two-sided time series {X̃n}∞n=−∞. We will use this fact only for the
purpose of defining the conditional expectation E(σ0(X̃∞

1 )|X̃0
−∞).
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Step 4. We show the consistency of the auxiliary algorithms mn and q̂l(X
ηj

0 ).

We proceed in a manner analogous to the one that we used in our earlier works: [6, 10].
Consider

mn − E(σηn |X
ηn

0 )

=
1
n

n−1∑
j=0

(
σηjI{σηj

≤ηj+1−ηj} − σηjI{σηj
≤ηj+1−ηj ,σηj

≤j}

)

+
1
n

n−1∑
j=0

(
σηj

I{σηj
≤ηj+1−ηj ,σηj

≤j} − E(σηjI{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )
)

+
1
n

n−1∑
j=0

(
E(σηj

I{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )− E(σηj |X
ηj

0 )
)

+

 1
n

n−1∑
j=0

E(σηj
|Xηj

0 )

− E(σηn |X
ηn

0 )

and denote the four terms in the right hand side by

An +Bn + Cn +Dn.

Next we truncate like Algoet did in [1] and observe that since the σηj are identically
distributed by Step 0,

P (σηj > j) ≤ P (σ0 > j)

and
∞∑

j=0

P (σ0 > j) = E(σ0) <∞.

The Borel–Cantelli lemma yields that eventually almost surely

σηj
≤ j

and so
An → 0

almost surely. Now we will deal with Bn. Put

Γj+1 = σηjI{σηj
≤ηj+1−ηj ,σηj

≤j} − E(σηjI{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 ).

We will consider the following martingale Un

Un =
n∑

j=1

Γj

j
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with respect to the sigma-field generated by Xηn

0 To apply martingale convergence the-
orem for L2-bounded martingales (cf. Theorem 2 p. 242 in [4] )we have to show that

∞∑
j=1

E(Γ2
j )

j2
<∞.

Now
E

(
(Γj+1)2

)
≤ E

(
(σηj )

2I{σηj
≤ηj+1−ηj ,σηj

≤j}

)
≤ E

(
(σηj )

2I{σηj
≤j}

)
.

By Step 1 the σηj ’s are identically distributed therefore

∞∑
j=1

E(Γ2
j )

j2
≤

∞∑
j=1

1
j2
E

(
(σηj−1)

2I{σηj−1≤j−1}

)

=
∞∑

j=1

E (
(σ0)2I{σ0=j−1}

)  ∞∑
l=j

1
l2


≤ KE(σ0)

where K is a suitable constant. We conclude that the sequence Un converges almost
surely and Kronecker’s lemma (cf. Shiryayev [14] p. 365) yields,

Bn =
1
n

n∑
j=1

Γj → 0 almost surely.

Now we deal with the third term Cn. Clearly,

E(σηjI{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )− E(σηj |X
ηj

0 ) ≤ 0

and
lim sup

j→∞

(
E(σηjI{σηj

≤ηj+1−ηj ,σηj
≤j}|X

ηj

0 )− E(σηj |X
ηj

0 )
)
≤ 0.

Since σηj
≤ ηj+1 − ηj as soon as there is at least one zero in X

ηj

0 for an arbitrary L,
eventually almost surely,

E(σηjI{σηj
≤L}|X

ηj

0 )− E(σηj |X
ηj

0 ) ≤ E(σηjI{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )− E(σηj |X
ηj

0 ).

By Step 2, Step 1 and Step 3,

E(σηj |X
ηj

0 ) = E
(
σ0(X̃∞

1 )|X̃0
η̂j(X̃0

−∞)

)
.

The latter forms a martingale and so

E(σηj |X
ηj

0 ) = E(σ0(X̃∞
1 )|X̃0

η̂j(X̃0
−∞)

) → E(σ0(X̃∞
1 )|X̃0

−∞) (20)

almost surely. Similarly,

E(σηjI{σηj
≤L}|X

ηj

0 ) = E(σ0I{ση0 (X̃∞1 )≤L}(X̃
∞
1 )|X̃0

η̂j(X̃0
−∞)

).



Inferring the residual waiting time for binary stationary time series 877

The latter forms a martingale and so

E(σηj
I{σηj

≤L}|X
ηj

0 )

= E(σ0(X̃∞
1 )I{ση0 (X̃∞1 )≤L}|X̃

0
η̂j(X̃0

−∞)
) → E(σ0(X̃∞

1 )I{ση0 (X̃∞1 )≤L}|X̃
0
−∞)

almost surely. Now, almost surely,

lim inf
j→∞

(
E(σηj

I{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )− E(σηj |X
ηj

0 )
)

≥ E(σ0(X̃∞
1 )I{ση0 (X̃∞1 )≤L}|X̃

0
−∞)− E(σ0(X̃∞

1 )|X̃0
−∞).

Since L was arbitrary,

lim inf
j→∞

(
E(σηj

I{σηj
≤ηj+1−ηj ,σηj

≤j}|X
ηj

0 )− E(σηj |X
ηj

0 )
)
≥ 0

almost surely. Combining the upper and lower bounds we get that almost surely

lim
j→∞

(
E(σηjI{σηj

≤ηj+1−ηj ,σηj
≤j}|X

ηj

0 )− E(σηj |X
ηj

0 )
)

= 0.

Thus by the Toeplitz lemma

Cn =
1
n

n−1∑
j=0

(
E(σηjI{σηj

≤ηj+1−ηj ,σηj
≤j}|X

ηj

0 )− E(σηj |X
ηj

0 )
)
→ 0

almost surely.
Now we deal with the last term Dn. By (20) and the Toeplitz lemma

Dn → 0

almost surely.

The proof of the result for q̂l(X
ηj

0 ) is even simpler.

q̂l(X
ηj

0 )− P (σηn = l|Xηn

0 )

=
1
n

n−1∑
j=0

(
I{σηj

=l,σηj
≤ηj+1−ηj} − P (σηj = l, σηj ≤ ηj+1 − ηj |X

ηj

0 )
)

+
1
n

n−1∑
j=0

(
P (σηj

= l, σηj
≤ ηj+1 − ηj |X

ηj

0 )− P (σηj = l|Xηj

0 )
)

+

 1
n

n−1∑
j=0

P (σηj
= l|Xηj

0 )

− P (σηn
= l|Xηn

0 )

= En + Fn +Gn.
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The first term is an average of bounded martingale differences and so En → 0 almost
surely. Since σηj ≤ ηj+1 − ηj as soon as there is at least one zero in X

ηj

0 so Fn → 0
almost surely. Concerning the last term, by Step 2, Step 1 and Step 3,

P (σηj
= l|Xηj

0 ) = P (σ0(X̃∞
1 ) = l|X̃0

η̂j(X̃0
−∞)

).

The latter forms a martingale and so

P (σηj = l|Xηj

0 ) = P (σ0(X̃∞
1 ) = l|X̃0

η̂j(X̃0
−∞)

) → P (σ0(X̃∞
1 ) = l|X̃0

−∞) (21)

almost surely and so Gn → 0 almost surely. Since both q̂l(X
ηj

0 ) (as soon as there is at
least one zero in Xηj

0 )and P (σ0(X̃∞
1 ) = l|X̃0

−∞) are probability distributions

lim
n→∞

∞∑
l=0

|q̂l(X0, . . . , Xηn
)− P (σηn

= l|Xηn

0 ))| = 0

almost surely.

Step 5. We show that if the process is not a renewal process then our schemes are
consistent.

If the process is not a renewal process then for some k ≥ 0, i ≥ 1, z−k−1
−k−i ∈ {0, 1}i,

P (X−k−1
−k−i = z−k−1

−k−i , X
0
−k = 01k) > 0:

P (X1 = 0|X0
−k = 01k)

6= P (X1 = 0|X−k−1
−k−i = z−k−1

−k−i , X
0
−k = 01k)

which in turn implies that

lim inf
n→∞

∆̂n > 0 almost surely

and so
∆̂n > n−β eventually almost surely.

Thus eventually, we will use mn and q̂l(X
ηj

0 ) on the stopping times ηn and by Step 4
the scheme is consistent.

Step 6. For renewal processes we show that our schemes h∗i (X
ξ∗i
0 ), q̂∗l (Xξ∗i

0 ) are consis-
tent and that limn→∞

ξn

n = 1 almost surely.

We have to check the conditions of Theorem 2 in Morvai and Weiss [9]. For shorthand,
let ph = P (σ0 = h|X0 = 0). Then it is easy to see that

E(|σ0|α) =
∞∑

L=0

∑∞
h=0 h

αph+L∑∞
h=L ph

∑∞
h=L ph

1 +
∑∞

h=0 hph
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(cf. the proof of Theorem 2 in Morvai and Weiss [9]). Now, by assumption, for α > 1

∞ >

∞∑
L=0

∞∑
h=0

hαph+L =
∞∑

h=0

(1 + 2α + . . . hα)ph

≥
∞∑

h=2

(2α + . . . hα)ph

≥
∞∑

h=2

( ∫ 2

1

xαdx+ . . .

∫ h

h−1

xα dx
)
ph

=
∞∑

h=2

( ∫ h

1

xα dx
)
ph

=
∞∑

h=2

(hα+1ph

α+ 1
− ph

α+ 1

)
≥

∞∑
h=2

hα+1ph

α+ 1
− 1.

Thus the condition in Theorem 2 in Morvai and Weiss [9]

∞∑
h=0

hα+1ph <∞

is satisfied. By Theorem 2 in Morvai and Weiss [9] our schemes h∗i (X
ξ∗i
0 ), q̂∗l (Xξ∗i

0 ) are
consistent and

lim sup
n→∞

ξn
n

= 1.

Step 7. We prove that ∆̂n ≤ n−β eventually almost surely for renewal processes.

Set θ+l,j,0 = 0, θ−l,j,0 = 0 and define

θ+l,j,i = θ+l,j,i−1 + min
{
t > 0 : X

l+θ+
l,j,i−1+t

l+θ+
l,j,i−1−j+1+t

= X
l+θ+

l,j,i−1

l+θ+
l,j,i−1−j+1

}
and

θ−l,j,i = θ−l,j,i−1 + min
{
t > 0 : X

l−θ−l,j,i−1−t

l−θ−l,j,i−1−j+1−t
= X

l−θ−l,j,i−1

l−θ−l,j,i−1−j+1

}
.

Define p(0|w0
−q) = P (X1 = 0|X0

−q = w0
−q). Assume that the process is a binary renewal

process. Then for r, s ≥ 0,

Xl−θ−l,j,r+1, . . . , Xl−θ−l,j,1+1, Xl+θ+
l,j,0+1, . . . , Xl+θ+

l,j,s+1

are conditionally independent and identically distributed random variables for any fixed
j ≥ k given τl = k, where the identical distribution is p(0|01k).



880 G. MORVAI AND B. WEISS

The following argument is identical to the one in [10] but we repeat it for the sake of
completeness. Observe that

P (∆̂n > n−β)

= P
(

max
0≤k≤n−1

max
1≤i≤n−k

max
z0
−k−i∈S

n
k,i

∣∣p̂n(0|z0
−k)− p̂n(0|z0

−k−i)
∣∣ > n−β

)
≤ P

(
max

0≤k≤n−1
max

1≤i≤n−k
max

z0
−k−i∈S

n
k,i

∣∣p̂n(0|z0
−k)− p(0|z0

−k)
∣∣ > 0.5n−β

)
+ P

(
max

0≤k≤n−1
max

1≤i≤n−k
max

z0
−k−i∈S

n
k,i

∣∣p(0|z0
−k)− p̂n(0|z0

−k−i)
∣∣ > 0.5n−β

)
≤ P

(
max

0≤k≤n−1
max

z0
−k∈S

n
k,0

∣∣p̂n(0|z0
−k)− p(0|z0

−k)
∣∣ > 0.5n−β

)
+ P

(
max

0≤k≤n
max

1≤i≤n−k
max

z0
−k−i∈S

n
k,i

∣∣p(0|z0
−k)− p̂n(0|z0

−k−i)
∣∣ > 0.5n−β

)
≤ P

(
∃k ≥ 0, k ≤ l ≤ n− 1 : X l

l−k ∈ Sn
k,0,

∣∣p̂n(0|X l
l−k)− p(0|X l

l−k)
∣∣ > 0.5n−β

)
+ P

(
∃k ≥ 0, i ≥ 1, k + i ≤ l < n : X l

l−k−i ∈ Sn
k,i,

∣∣p̂n(0|X l
l−k−i)− p(0|X l

l−k)
∣∣ > 0.5n−β

)
≤

n−1∑
i=0

P
(
∃k ≥ 0, k + i ≤ l < n : X l

l−k−i ∈ Sn
k,i,

∣∣p̂n(0|X l
l−k−i)− p(0|X l

l−k)
∣∣ > 0.5n−β

)
≤

n−1∑
i=0

n−1∑
l=0

P
(
X l

l−τl−i ∈ Sn
τl,i
,
∣∣p̂n(0|X l

l−τl−i)− p(0|X l
l−τl

)
∣∣ > 0.5n−β

)
.

For a given 0 ≤ l ≤ n− 1 assume that τl = k. By Hoeffding’s inequality for sums of
bounded independent random variables,

P
(
| 1
r + s+ 1

( r∑
h=1

1{X
l−θ

−
l,k+i,h

+1
=0} +

s∑
h=0

1{X
l+θ

+
l−1,k+i,h

+1
=0}

)
−p(0|01k)| ≥ 0.5n−β |τl = k) ≤ 2e−0.5n−2β(r+s+1).

Multiplying both sides by P (τl = k) and summing over all possible k we get that

P
(
X l

l−τl−i ∈ Sn
τl,i
,

| 1
r + s+ 1

( r∑
h=1

1{X
l−θ

−
l,τl+i,h

+1
=0} +

s∑
h=0

1{X
l+θ

+
l,τl+i,h

+1
=0}

)
− p(0|X l

l−τl
)| > 0.5n−β

)
≤ P

(
| 1
r + s+ 1

( r∑
h=1

1{X
l−θ

−
l,τl+i,h

+1
=0} +

s∑
h=0

1{X
l+θ

+
l,τl+i,h

+1
=0}

)
− p(0|X l

l−τl
)| > 0.5n−β

)
≤ 2e−0.5n−2β(r+s+1).



Inferring the residual waiting time for binary stationary time series 881

Summing over all 0 ≤ l ≤ n − 1 and over all pairs (r, s) such that r ≥ 0, s ≥ 0,
r + s+ 1 ≥ bn1−γc we get that

n−1∑
l=0

P
(
X l

l−τl−i ∈ Sn
τl,i
,∣∣p̂n(0|X l

l−τl−i)− p(0|X l
l−τl

)
∣∣ > 0.5n−β

)
≤ n

∞∑
h=bn1−γc

h2e−0.5n−2βh.

Applying this final inequality to (22) we get that

P (∆̂n > n−β) ≤ 2n2
∞∑

h=bn1−γc

he−0.5n−2βh.

The sum on the right hand side is bounded by a constant times the first term and since
0 < β < 1−γ

2 and thus as n varies the right hand side is a convergent series and by the
Borel–Cantelli lemma eventually almost surely we will have that:

∆̂n ≤ n−β .

Step 8. We prove the statements of our Theorem.

By Step 5 and 7 we stick to the right estimators and stopping times and so by Step 5,
6 and 7 our schemes are consistent and if the process is a renewal process then

1 ≤ lim sup
n→∞

λn

n
= lim sup

n→∞

ξn
n

= 1.

This completes the proof of the Theorem.

For further reading on related results we refer the interested reader to [1, 2, 3, 7, 8,
9, 12, 13, 15, 16].
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