6,214 research outputs found

    Timed Soft Concurrent Constraint Programs: An Interleaved and a Parallel Approach

    Full text link
    We propose a timed and soft extension of Concurrent Constraint Programming. The time extension is based on the hypothesis of bounded asynchrony: the computation takes a bounded period of time and is measured by a discrete global clock. Action prefixing is then considered as the syntactic marker which distinguishes a time instant from the next one. Supported by soft constraints instead of crisp ones, tell and ask agents are now equipped with a preference (or consistency) threshold which is used to determine their success or suspension. In the paper we provide a language to describe the agents behavior, together with its operational and denotational semantics, for which we also prove the compositionality and correctness properties. After presenting a semantics using maximal parallelism of actions, we also describe a version for their interleaving on a single processor (with maximal parallelism for time elapsing). Coordinating agents that need to take decisions both on preference values and time events may benefit from this language. To appear in Theory and Practice of Logic Programming (TPLP)

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Deciding Full Branching Time Logic by Program Transformation

    Get PDF
    We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic ω -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic ω-program

    Transformations of Logic Programs on Infinite Lists

    Get PDF
    We consider an extension of logic programs, called \omega-programs, that can be used to define predicates over infinite lists. \omega-programs allow us to specify properties of the infinite behavior of reactive systems and, in general, properties of infinite sequences of events. The semantics of \omega-programs is an extension of the perfect model semantics. We present variants of the familiar unfold/fold rules which can be used for transforming \omega-programs. We show that these new rules are correct, that is, their application preserves the perfect model semantics. Then we outline a general methodology based on program transformation for verifying properties of \omega-programs. We demonstrate the power of our transformation-based verification methodology by proving some properties of Buechi automata and \omega-regular languages.Comment: 37 pages, including the appendix with proofs. This is an extended version of a paper published in Theory and Practice of Logic Programming, see belo

    Step-Indexed Normalization for a Language with General Recursion

    Get PDF
    The Trellys project has produced several designs for practical dependently typed languages. These languages are broken into two fragments-a_logical_fragment where every term normalizes and which is consistent when interpreted as a logic, and a_programmatic_fragment with general recursion and other convenient but unsound features. In this paper, we present a small example language in this style. Our design allows the programmer to explicitly mention and pass information between the two fragments. We show that this feature substantially complicates the metatheory and present a new technique, combining the traditional Girard-Tait method with step-indexed logical relations, which we use to show normalization for the logical fragment.Comment: In Proceedings MSFP 2012, arXiv:1202.240
    corecore