79,665 research outputs found

    Influence of initiators on the tipping point in the extended Watts model

    Full text link
    In this paper, we study how the influence of initiators (seeds) affects the tipping point of information cascades in networks. We consider an extended version of the Watts model, in which each node is either active (i.e., having adopted an innovation) or inactive. In this extended model, the adoption threshold, defined as the fraction of active neighbors required for an inactive node to become active, depends on whether the node is a seed neighbor (i.e., connected to one or more initiators) or an ordinary node (i.e., not connected to any initiators). Using the tree approximation on random graphs, we determine the tipping point, at which the fraction of active nodes in the final state increases discontinuously with an increasing seed fraction. The occurrence of a tipping point and the scale of cascades depend on two factors: whether a giant component of seed neighbors is formed when the seed fraction is large enough to trigger cascades among seed neighbors, and whether the giant component of ordinary nodes is maintained when newly activated nodes trigger further activations among ordinary nodes. The coexistence of two giant components suggests that a tipping point can appear twice. We present an example demonstrating the existence of two tipping points when there is a gap between the adoption thresholds of seed neighbors and ordinary nodes. Monte Carlo simulations clearly show that the first cascade, occurring at a small tipping point, occurs in the giant component of seed neighbors, while the second cascade, occurring at a larger tipping point, extends into the giant component of ordinary nodes.Comment: 10 pages, 5 figure

    Maximizing Spectral Flux from Self-Seeding Hard X-ray FELs

    Full text link
    Fully coherent x-rays can be generated by self-seeding x-ray free-electron lasers (XFELs). Self-seeding by a forward Bragg diffraction (FBD) monochromator has been recently proposed [1] and demonstrated [2]. Characteristic time To of FBD determines the power, spectral, and time characteristics of the FBD seed [3]. Here we show that for a given electron bunch with duration sigma_e the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing To ~ sigma_e/pi and by optimizing the electron bunch delay tau_e. The choices of To and tau_e are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by sigma_e. Two-color seeding takes place To >> sigma_e/\pi. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (sigma_e ~ 5 fs) and long-bunch (sigma_e ~ 20 fs) operation modes of the LCLS XFEL

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    Estimation of inter-rater reliability

    Get PDF

    Seeding for pervasively overlapping communities

    Full text link
    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.Comment: 8 Page
    • …
    corecore