5,276 research outputs found

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table

    Secure Lossy Source Coding with Side Information at the Decoders

    Full text link
    This paper investigates the problem of secure lossy source coding in the presence of an eavesdropper with arbitrary correlated side informations at the legitimate decoder (referred to as Bob) and the eavesdropper (referred to as Eve). This scenario consists of an encoder that wishes to compress a source to satisfy the desired requirements on: (i) the distortion level at Bob and (ii) the equivocation rate at Eve. It is assumed that the decoders have access to correlated sources as side information. For instance, this problem can be seen as a generalization of the well-known Wyner-Ziv problem taking into account the security requirements. A complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated side informations at the decoders is derived. Several special cases of interest and an application example to secure lossy source coding of binary sources in the presence of binary and ternary side informations are also considered. It is shown that the statistical differences between the side information at the decoders and the presence of non-zero distortion at the legitimate decoder can be useful in terms of secrecy. Applications of these results arise in a variety of distributed sensor network scenarios.Comment: 7 pages, 5 figures, 1 table, to be presented at Allerton 201

    Secure Transmission of Sources over Noisy Channels with Side Information at the Receivers

    Full text link
    This paper investigates the problem of source-channel coding for secure transmission with arbitrarily correlated side informations at both receivers. This scenario consists of an encoder (referred to as Alice) that wishes to compress a source and send it through a noisy channel to a legitimate receiver (referred to as Bob). In this context, Alice must simultaneously satisfy the desired requirements on the distortion level at Bob, and the equivocation rate at the eavesdropper (referred to as Eve). This setting can be seen as a generalization of the problems of secure source coding with (uncoded) side information at the decoders, and the wiretap channel. A general outer bound on the rate-distortion-equivocation region, as well as an inner bound based on a pure digital scheme, is derived for arbitrary channels and side informations. In some special cases of interest, it is proved that this digital scheme is optimal and that separation holds. However, it is also shown through a simple counterexample with a binary source that a pure analog scheme can outperform the digital one while being optimal. According to these observations and assuming matched bandwidth, a novel hybrid digital/analog scheme that aims to gather the advantages of both digital and analog ones is then presented. In the quadratic Gaussian setup when side information is only present at the eavesdropper, this strategy is proved to be optimal. Furthermore, it outperforms both digital and analog schemes, and cannot be achieved via time-sharing. By means of an appropriate coding, the presence of any statistical difference among the side informations, the channel noises, and the distortion at Bob can be fully exploited in terms of secrecy.Comment: To appear in IEEE Transactions on Information Theor

    Privacy-Constrained Remote Source Coding

    Full text link
    We consider the problem of revealing/sharing data in an efficient and secure way via a compact representation. The representation should ensure reliable reconstruction of the desired features/attributes while still preserve privacy of the secret parts of the data. The problem is formulated as a remote lossy source coding with a privacy constraint where the remote source consists of public and secret parts. Inner and outer bounds for the optimal tradeoff region of compression rate, distortion, and privacy leakage rate are given and shown to coincide for some special cases. When specializing the distortion measure to a logarithmic loss function, the resulting rate-distortion-leakage tradeoff for the case of identical side information forms an optimization problem which corresponds to the "secure" version of the so-called information bottleneck.Comment: 10 pages, 1 figure, to be presented at ISIT 201

    Strongly Secure Privacy Amplification Cannot Be Obtained by Encoder of Slepian-Wolf Code

    Full text link
    The privacy amplification is a technique to distill a secret key from a random variable by a function so that the distilled key and eavesdropper's random variable are statistically independent. There are three kinds of security criteria for the key distilled by the privacy amplification: the normalized divergence criterion, which is also known as the weak security criterion, the variational distance criterion, and the divergence criterion, which is also known as the strong security criterion. As a technique to distill a secret key, it is known that the encoder of a Slepian-Wolf (the source coding with full side-information at the decoder) code can be used as a function for the privacy amplification if we employ the weak security criterion. In this paper, we show that the encoder of a Slepian-Wolf code cannot be used as a function for the privacy amplification if we employ the criteria other than the weak one.Comment: 10 pages, no figure, A part of this paper will be presented at 2009 IEEE International Symposium on Information Theory in Seoul, Korea. Version 2 is a published version. The results are not changed from version 1. Explanations are polished and some references are added. In version 3, only style and DOI are edite
    corecore