17,441 research outputs found

    On Secure Network Coding with Nonuniform or Restricted Wiretap Sets

    Full text link
    The secrecy capacity of a network, for a given collection of permissible wiretap sets, is the maximum rate of communication such that observing links in any permissible wiretap set reveals no information about the message. This paper considers secure network coding with nonuniform or restricted wiretap sets, for example, networks with unequal link capacities where a wiretapper can wiretap any subset of kk links, or networks where only a subset of links can be wiretapped. Existing results show that for the case of uniform wiretap sets (networks with equal capacity links/packets where any kk can be wiretapped), the secrecy capacity is given by the cut-set bound, and can be achieved by injecting kk random keys at the source which are decoded at the sink along with the message. This is the case whether or not the communicating users have information about the choice of wiretap set. In contrast, we show that for the nonuniform case, the cut-set bound is not achievable in general when the wiretap set is unknown, whereas it is achievable when the wiretap set is made known. We give achievable strategies where random keys are canceled at intermediate non-sink nodes, or injected at intermediate non-source nodes. Finally, we show that determining the secrecy capacity is a NP-hard problem.Comment: 24 pages, revision submitted to IEEE Transactions on Information Theor

    Coding against a Limited-view Adversary: The Effect of Causality and Feedback

    Full text link
    We consider the problem of communication over a multi-path network in the presence of a causal adversary. The limited-view causal adversary is able to eavesdrop on a subset of links and also jam on a potentially overlapping subset of links based on the current and past information. To ensure that the communication takes place reliably and secretly, resilient network codes with necessary redundancy are needed. We study two adversarial models - additive and overwrite jamming and we optionally assume passive feedback from decoder to encoder, i.e., the encoder sees everything that the decoder sees. The problem assumes transmissions are in the large alphabet regime. For both jamming models, we find the capacity under four scenarios - reliability without feedback, reliability and secrecy without feedback, reliability with passive feedback, reliability and secrecy with passive feedback. We observe that, in comparison to the non-causal setting, the capacity with a causal adversary is strictly increased for a wide variety of parameter settings and present our intuition through several examples.Comment: 15 page

    Secure Communication over 1-2-1 Networks

    Full text link
    This paper starts by assuming a 1-2-1 network, the abstracted noiseless model of mmWave networks that was shown to closely approximate the Gaussian capacity in [1], and studies secure communication. First, the secure capacity is derived for 1-2-1 networks where a source is connected to a destination through a network of unit capacity links. Then, lower and upper bounds on the secure capacity are derived for the case when source and destination have more than one beam, which allow them to transmit and receive in multiple directions at a time. Finally, secure capacity results are presented for diamond 1-2-1 networks when edges have different capacities.Comment: Submitted for ISIT 201

    Routing for Security in Networks with Adversarial Nodes

    Full text link
    We consider the problem of secure unicast transmission between two nodes in a directed graph, where an adversary eavesdrops/jams a subset of nodes. This adversarial setting is in contrast to traditional ones where the adversary controls a subset of links. In particular, we study, in the main, the class of routing-only schemes (as opposed to those allowing coding inside the network). Routing-only schemes usually have low implementation complexity, yet a characterization of the rates achievable by such schemes was open prior to this work. We first propose an LP based solution for secure communication against eavesdropping, and show that it is information-theoretically rate-optimal among all routing-only schemes. The idea behind our design is to balance information flow in the network so that no subset of nodes observe "too much" information. Interestingly, we show that the rates achieved by our routing-only scheme are always at least as good as, and sometimes better, than those achieved by "na\"ive" network coding schemes (i.e. the rate-optimal scheme designed for the traditional scenario where the adversary controls links in a network rather than nodes.) We also demonstrate non-trivial network coding schemes that achieve rates at least as high as (and again sometimes better than) those achieved by our routing schemes, but leave open the question of characterizing the optimal rate-region of the problem under all possible coding schemes. We then extend these routing-only schemes to the adversarial node-jamming scenarios and show similar results. During the journey of our investigation, we also develop a new technique that has the potential to derive non-trivial bounds for general secure-communication schemes

    The QUIC Fix for Optimal Video Streaming

    Get PDF
    Within a few years of its introduction, QUIC has gained traction: a significant chunk of traffic is now delivered over QUIC. The networking community is actively engaged in debating the fairness, performance, and applicability of QUIC for various use cases, but these debates are centered around a narrow, common theme: how does the new reliable transport built on top of UDP fare in different scenarios? Support for unreliable delivery in QUIC remains largely unexplored. The option for delivering content unreliably, as in a best-effort model, deserves the QUIC designers' and community's attention. We propose extending QUIC to support unreliable streams and present a simple approach for implementation. We discuss a simple use case of video streaming---an application that dominates the overall Internet traffic---that can leverage the unreliable streams and potentially bring immense benefits to network operators and content providers. To this end, we present a prototype implementation that, by using both the reliable and unreliable streams in QUIC, outperforms both TCP and QUIC in our evaluations.Comment: Published to ACM CoNEXT Workshop on the Evolution, Performance, and Interoperability of QUIC (EPIQ

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation
    corecore