17 research outputs found

    A New Cross-Layer FPGA-Based Security Scheme for Wireless Networks

    Get PDF
    This chapter presents a new cross-layer security scheme which deploys efficient coding techniques in the physical layer in an upper layer classical cryptographic protocol system. The rationale in designing the new scheme is to enhance security-throughput trade-off in wireless networks which is in contrast to existing schemes which either enhances security at the detriment of data throughput or vice versa. The new scheme is implemented using the residue number system (RNS), non-linear convolutional coding and subband coding at the physical layer and RSA cryptography at the upper layers. The RNS reduces the huge data obtained from RSA cryptography into small parallel data. To increase the security level, iterated wavelet-based subband coding splits the ciphertext into different levels of decomposition. At subsequent levels of decomposition, the ciphertext from the preceding level serves as data for encryption using convolutional codes. In addition, throughput is enhanced by transmitting small parallel data and the bit error correction capability of non-linear convolutional code. It is shown that, various passive and active attacks common to wireless networks could be circumvented. An FPGA implementation applied to CDMA could fit into a single Virtex-4 FPGA due to small parallel data sizes employed

    Secure Lossy Function Computation with Multiple Private Remote Source Observations

    Get PDF
    We consider that multiple noisy observations of a remote source are used by different nodes in the same network to compute a function of the noisy observations under joint secrecy, joint privacy, and individual storage constraints, as well as a distortion constraint on the function computed. Suppose that an eavesdropper has access to one of the noisy observations in addition to the public messages exchanged between legitimate nodes. This model extends previous models by 1) considering a remote source as the source of dependency between the correlated random variables observed at different nodes; 2) allowing the function computed to be a distorted version of the target function, which allows to reduce the storage rate as compared to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 3) introducing a privacy metric that measures the information leakage about the remote source to the fusion center in addition to the classic privacy metric that measures the leakage to an eavesdropper; 4) considering two transmitting nodes to compute a function rather than one node. Single-letter inner and outer bounds are provided for the considered lossy function computation problem, and simplified bounds are established for two special cases, in which either the computed function is partially invertible or the function is invertible and the measurement channel of the eavesdropper is physically degraded with respect to the measurement channel of the fusion center

    Multiple Noisy Private Remote Source Observations for Secure Function Computation

    Get PDF
    The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include 1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals\u27 observed sequences; 2) the information leakage to a fusion center with respect to the remote source is considered as another privacy leakage metric; 3) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless single-function computation with two transmitting nodes, which recover previous results in the literature, and for special cases that consider invertible functions simplified bounds are established

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Reconfigurable Architectures for Cryptographic Systems

    No full text
    Field Programmable Gate Arrays (FPGAs) are suitable platforms for implementing cryptographic algorithms in hardware due to their flexibility, good performance and low power consumption. Computer security is becoming increasingly important and security requirements such as key sizes are quickly evolving. This creates the need for customisable hardware designs for cryptographic operations capable of covering a large design space. In this thesis we explore the four design dimensions relevant to cryptography - speed, area, power consumption and security of the crypto-system - by developing parametric designs for public-key generation and encryption as well as side-channel attack countermeasures. There are four contributions. First, we present new architectures for Montgomery multiplication and exponentiation based on variable pipelining and variable serial replication. Our implementations of these architectures are compared to the best implementations in the literature and the design space is explored in terms of speed and area trade-offs. Second, we generalise our Montgomery multiplier design ideas by developing a parametric model to allow rapid optimisation of a general class of algorithms containing loops with dependencies carried from one iteration to the next. By predicting the throughput and the area of the design, our model facilitates and speeds up design space exploration. Third, we develop new architectures for primality testing including the first hardware architecture for the NIST approved Lucas primality test. We explore the area, speed and power consumption trade-offs by comparing our Lucas architectures on CPU, FPGA and ASIC. Finally, we tackle the security issue by presenting two novel power attack countermeasures based on on-chip power monitoring. Our constant power framework uses a closed-loop control system to keep the power consumption of any FPGA implementation constant. Our attack detection framework uses a network of ring-oscillators to detect the insertion of a shunt resistor-based power measurement circuit on a device's power rail. This countermeasure is lightweight and has a relatively low power overhead compared to existing masking and hiding countermeasures

    Private Remote Sources for Secure Multi-Function Computation

    Get PDF
    We consider a distributed function computation problem in which parties observing noisy versions of a remote source facilitate the computation of a function of their observations at a fusion center through public communication. The distributed function computation is subject to constraints, including not only reliability and storage but also secrecy and privacy. Specifically, 1) the function computed should remain secret from an eavesdropper observing the public communication and correlated observations, measured in terms of the information leaked about the arguments of the function, to ensure secrecy regardless of the exact function used; 2) the remote source should remain private from the eavesdropper and the fusion center, measured in terms of the information leaked about the remote source itself. We derive the exact rate regions for lossless and lossy single-function computation and illustrate the lossy single-function computation rate region for an information bottleneck example, in which the optimal auxiliary random variables are characterized for binary-input symmetric-output channels. We extend the approach to lossless and lossy asynchronous multiple-function computations with joint secrecy and privacy constraints, in which case inner and outer bounds for the rate regions that differ only in the Markov chain conditions imposed are characterized

    Cryptography Based on Correlated Data: Foundations and Practice

    Get PDF
    Correlated data can be very useful in cryptography. For instance, if a uniformly random key is available to Alice and Bob, it can be used as an one-time pad to transmit a message with perfect security. With more elaborate forms of correlated data, the parties can achieve even more complex cryptographic tasks, such as secure multiparty computation. This thesis explores (from both a theoretical and a practical point of view) the topic of cryptography based on correlated data
    corecore