69,342 research outputs found

    Better duplicate detection for systematic reviewers: Evaluation of Systematic Review Assistant-Deduplication Module

    Get PDF
    BACKGROUND: A major problem arising from searching across bibliographic databases is the retrieval of duplicate citations. Removing such duplicates is an essential task to ensure systematic reviewers do not waste time screening the same citation multiple times. Although reference management software use algorithms to remove duplicate records, this is only partially successful and necessitates removing the remaining duplicates manually. This time-consuming task leads to wasted resources. We sought to evaluate the effectiveness of a newly developed deduplication program against EndNote. METHODS: A literature search of 1,988 citations was manually inspected and duplicate citations identified and coded to create a benchmark dataset. The Systematic Review Assistant-Deduplication Module (SRA-DM) was iteratively developed and tested using the benchmark dataset and compared with EndNote’s default one step auto-deduplication process matching on (‘author’, ‘year’, ‘title’). The accuracy of deduplication was reported by calculating the sensitivity and specificity. Further validation tests, with three additional benchmarked literature searches comprising a total of 4,563 citations were performed to determine the reliability of the SRA-DM algorithm. RESULTS: The sensitivity (84%) and specificity (100%) of the SRA-DM was superior to EndNote (sensitivity 51%, specificity 99.83%). Validation testing on three additional biomedical literature searches demonstrated that SRA-DM consistently achieved higher sensitivity than EndNote (90% vs 63%), (84% vs 73%) and (84% vs 64%). Furthermore, the specificity of SRA-DM was 100%, whereas the specificity of EndNote was imperfect (average 99.75%) with some unique records wrongly assigned as duplicates. Overall, there was a 42.86% increase in the number of duplicates records detected with SRA-DM compared with EndNote auto-deduplication. CONCLUSIONS: The Systematic Review Assistant-Deduplication Module offers users a reliable program to remove duplicate records with greater sensitivity and specificity than EndNote. This application will save researchers and information specialists time and avoid research waste. The deduplication program is freely available online

    On the Displacement of Eigenvalues when Removing a Twin Vertex

    Get PDF
    Twin vertices of a graph have the same open neighbourhood. If they are not adjacent, then they are called duplicates and contribute the eigenvalue zero to the adjacency matrix. Otherwise they are termed co-duplicates, when they contribute −1-1 as an eigenvalue of the adjacency matrix. On removing a twin vertex from a graph, the spectrum of the adjacency matrix does not only lose the eigenvalue 00 or −1-1. The perturbation sends a rippling effect to the spectrum. The simple eigenvalues are displaced. We obtain a closed formula for the characteristic polynomial of a graph with twin vertices in terms of two polynomials associated with the perturbed graph. These are used to obtain estimates of the displacements in the spectrum caused by the perturbation

    Removing duplicate reads using graphics processing units

    Get PDF
    Background: During library construction polymerase chain reaction is used to enrich the DNA before sequencing. Typically, this process generates duplicate read sequences. Removal of these artifacts is mandatory, as they can affect the correct interpretation of data in several analyses. Ideally, duplicate reads should be characterized by identical nucleotide sequences. However, due to sequencing errors, duplicates may also be nearly-identical. Removing nearly-identical duplicates can result in a notable computational effort. To deal with this challenge, we recently proposed a GPU method aimed at removing identical and nearly-identical duplicates generated with an Illumina platform. The method implements an approach based on prefix-suffix comparison. Read sequences with identical prefix are considered potential duplicates. Then, their suffixes are compared to identify and remove those that are actually duplicated. Although the method can be efficiently used to remove duplicates, there are some limitations that need to be overcome. In particular, it cannot to detect potential duplicates in the event that prefixes are longer than 27 bases, and it does not provide support for paired-end read libraries. Moreover, large clusters of potential duplicates are split into smaller with the aim to guarantees a reasonable computing time. This heuristic may affect the accuracy of the analysis. Results: In this work we propose GPU-DupRemoval, a new implementation of our method able to (i) cluster reads without constraints on the maximum length of the prefixes, (ii) support both single- and paired-end read libraries, and (iii) analyze large clusters of potential duplicates. Conclusions: Due to the massive parallelization obtained by exploiting graphics cards, GPU-DupRemoval removes duplicate reads faster than other cutting-edge solutions, while outperforming most of them in terms of amount of duplicates reads
    • …
    corecore