221 research outputs found

    An Upper Bound on the Complexity of Recognizable Tree Languages

    Get PDF
    The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class (D_n(Σ0_2))\Game (D\_n({\bf\Sigma}^0\_2)) for some natural number n1n\geq 1, where \Game is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space 2ω2^\omega into the class Δ1_2{\bf\Delta}^1\_2, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual Δ1_2{\bf\Delta}^1\_2

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton

    The Isomorphism Relation Between Tree-Automatic Structures

    Get PDF
    An ω\omega-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω\omega-tree-automatic structures. We prove first that the isomorphism relation for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω\omega-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a Σ21\Sigma_2^1-set nor a Π21\Pi_2^1-set

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    There Exist some Omega-Powers of Any Borel Rank

    Get PDF
    Omega-powers of finitary languages are languages of infinite words (omega-languages) in the form V^omega, where V is a finitary language over a finite alphabet X. They appear very naturally in the characterizaton of regular or context-free omega-languages. Since the set of infinite words over a finite alphabet X can be equipped with the usual Cantor topology, the question of the topological complexity of omega-powers of finitary languages naturally arises and has been posed by Niwinski (1990), Simonnet (1992) and Staiger (1997). It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, that there exists a context free language L such that L^omega is analytic but not Borel, and that there exists a finitary language V such that V^omega is a Borel set of infinite rank. But it was still unknown which could be the possible infinite Borel ranks of omega-powers. We fill this gap here, proving the following very surprising result which shows that omega-powers exhibit a great topological complexity: for each non-null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers.Comment: To appear in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 2007, Lausanne, Switzerland, September 11-15, 2007, Lecture Notes in Computer Science, (c) Springer, 200

    On the Problem of Computing the Probability of Regular Sets of Trees

    Get PDF
    We consider the problem of computing the probability of regular languages of infinite trees with respect to the natural coin-flipping measure. We propose an algorithm which computes the probability of languages recognizable by \emph{game automata}. In particular this algorithm is applicable to all deterministic automata. We then use the algorithm to prove through examples three properties of measure: (1) there exist regular sets having irrational probability, (2) there exist comeager regular sets having probability 00 and (3) the probability of \emph{game languages} Wi,kW_{i,k}, from automata theory, is 00 if kk is odd and is 11 otherwise
    corecore