25 research outputs found

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation

    Primal-Dual Active-Set Methods for Convex Quadratic Optimization with Applications

    Get PDF
    Primal-dual active-set (PDAS) methods are developed for solving quadratic optimization problems (QPs). Such problems arise in their own right in optimal control and statistics–two applications of interest considered in this dissertation–and as subproblems when solving nonlinear optimization problems. PDAS methods are promising as they possess the same favorable properties as other active-set methods, such as their ability to be warm-started and to obtain highly accurate solutions by explicitly identifying sets of constraints that are active at an optimal solution. However, unlike traditional active-set methods, PDAS methods have convergence guarantees despite making rapid changes in active-set estimates, making them well suited for solving large-scale problems.Two PDAS variants are proposed for efficiently solving generally-constrained convex QPs. Both variants ensure global convergence of the iterates by enforcing montonicity in a measure of progress. Besides identifying an estimate set estimate, a novel uncertain set is introduced into the framework in order to house indices of variables that have been identified as being susceptible to cycling. The introduction of the uncertainty set guarantees convergence of the algorithm, and with techniques proposed to keep the set from expanding quickly, the practical performance of the algorithm is shown to be very efficient. Another PDAS variant is proposed for solving certain convex QPs that commonly arise when discretizing optimal control problems. The proposed framework allows inexactness in the subproblem solutions, which can significantly reduce computational cost in large-scale settings. By controlling the level inexactness either by exploiting knowledge of an upper bound of a matrix inverse or by dynamic estimation of such a value, the method achieves convergence guarantees and is shown to outperform a method that employs exact solutions computed by direct factorization techniques.Finally, the application of PDAS techniques for applications in statistics, variants are proposed for solving isotonic regression (IR) and trend filtering (TR) problems. It is shown that PDAS can solve an IR problem with n data points with only O(n) arithmetic operations. Moreover, the method is shown to outperform the state-of-the-art method for solving IR problems, especially when warm-starting is considered. Enhancements to themethod are proposed for solving general TF problems, and numerical results are presented to show that PDAS methods are viable for a broad class of such problems

    On Augmented Lagrangian Methods with General Lower-Level Constraints

    Full text link

    Acceleration Methods

    Full text link
    This monograph covers some recent advances in a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, namely momentum and nested optimization schemes. They coincide in the quadratic case to form the Chebyshev method. We discuss momentum methods in detail, starting with the seminal work of Nesterov and structure convergence proofs using a few master templates, such as that for optimized gradient methods, which provide the key benefit of showing how momentum methods optimize convergence guarantees. We further cover proximal acceleration, at the heart of the Catalyst and Accelerated Hybrid Proximal Extragradient frameworks, using similar algorithmic patterns. Common acceleration techniques rely directly on the knowledge of some of the regularity parameters in the problem at hand. We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates while adapting to unobserved regularity parameters.Comment: Published in Foundation and Trends in Optimization (see https://www.nowpublishers.com/article/Details/OPT-036

    A methodology for robust optimization of low-thrust trajectories in multi-body environments

    Get PDF
    Issued as final reportThales Alenia Spac
    corecore