8,068 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Search Strategy of Level-Based Flooding for the Internet of Things

    Full text link
    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales

    A Distributed Query Processing Engine

    Get PDF
    Wireless sensor networks (WSNs) are formed of tiny, highly energy-constrained sensor nodes that are equipped with wireless transceivers. They may be mobile and are usually deployed in large numbers in unfamiliar environments. The nodes communicate with one another by autonomously creating ad-hoc networks which are subsequently used to gather sensor data. WSNs also process the data within the network itself and only forward the result to the requesting node. This is referred to as in-network data aggregation and results in the substantial reduction of the amount of data that needs to be transmitted by any single node in the network. In this paper we present a framework for a distributed query processing engine (DQPE) which would allow sensor nodes to examine incoming queries and autonomously perform query optimisation using information available locally. Such qualities make a WSN the perfect tool to carryout environmental\ud monitoring in future planetary exploration missions in a reliable and cost effective manner

    Energy Efficient Rectangular Indexing for Mobile Peer-to-Peer Environment

    Get PDF
    Now a days in wireless environment there are many challenges. One of them which is need to be addressed in mobile Peer-to-Peer environment is getting the information of interest quickly and efficiently. Wherein whenever the node tries to get the desired data it has to wait too long or have to contact to unnecessary nodes which are not having their data of interest. This causes the node to waste the limited power resources and incurs more cost in terms of energy wastage. Here we proposed an energy efficient rectangular indexing called PMBR (Peer-to-Peer Minimum Bounding Rectangle) which allows the user to get the information of interest in energy efficient manner. We proposed algorithms namely PMBR_DSS, PMBR_HB and PMBR_CP and processed Nearest Neighbor & Range type queries. The experimental results carried out shows that the proposed algorithm PMBR_CP provides the efficient, quick and assured access to information of interest by saving the scarce power resources

    Energy-aware peering routing protocol for indoor hospital body area network communication

    Get PDF
    The recent research in Body Area Networks (BAN) is focused on making its communication more reliable, energy efficient, secure, and to better utilize system resources. In this paper we propose a novel BAN network architecture for indoor hospital environments, and a new mechanism of peer discovery with routing table construction that helps to reduce network traffic load, energy consumption, and improves BAN reliability. We have performed extensive simulations in the Castalia simulation environment to show that our proposed protocol has better performance in terms of reduced BAN traffic load, increased number of successful packets received by nodes, reduced number of packets forwarded by intermediate nodes, and overall lower energy consumption compared to other protocols

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper

    Wireless communication and management system for E-Bike dynamic inductive power transfer lanes

    Get PDF
    This paper presents the design, implementation, and testing of a wireless communication system for automatic identification of e-bikes and management of their battery charging in the context of dynamic inductive wireless power transfer (DIWPT) lanes. The proposed system checks if an e-bike, uniquely identified by its RFID tag, is authorized to receive energy from the lane coils and acts accordingly. An authentication mechanism was developed based on the use of embedded Wi-Fi boards attached to the coils and communicating with a central HTTP server with a MySQL database. The developed management system also provides other features, such as the recording of the number of lane coils used by each e-bike for billing purposes. The results from experimental tests on a laboratory prototype were used to validate the developed functionalities and assess the quality of service provided by the proposed system.This work was supported by FCT national funds, under the national support to R&D units grant,through the reference project UIDB/04436/2020 and UIDP/04436/2020

    Distributed Recognition of Reference Nodes for Wireless Sensor Network Localization

    Get PDF
    All known localization techniques for wireless sensor and ad-hoc networks require certain set of reference nodes being used for position estimation. The anchor-free techniques in contrast to anchor-based do not require reference nodes called anchors to be placed in the network area before localization operation itself, but they can establish own reference coordinate system to be used for the relative position estimation. We observed that contemporary anchor-free localization algorithms achieve a low localization error, but dissipate significant energy reserves during the recognition of reference nodes used for the position estimation. Therefore, we have proposed the optimized anchor-free localization algorithm referred to as BRL (Boundary Recognition aided Localization), which achieves a low localization error and mainly reduces the communication cost of the reference nodes recognition phase. The proposed BRL algorithm was investigated throughout the extensive simulations on the database of networks with the different number of nodes and densities and was compared in terms of communication cost and localization error with the known related algorithms such as AFL and CRP. Through the extensive simulations we have observed network conditions where novel BRL algorithm excels in comparison with the state of art
    • 

    corecore