477 research outputs found

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family

    The Bag Semantics of Ontology-Based Data Access

    Full text link
    Ontology-based data access (OBDA) is a popular approach for integrating and querying multiple data sources by means of a shared ontology. The ontology is linked to the sources using mappings, which assign views over the data to ontology predicates. Motivated by the need for OBDA systems supporting database-style aggregate queries, we propose a bag semantics for OBDA, where duplicate tuples in the views defined by the mappings are retained, as is the case in standard databases. We show that bag semantics makes conjunctive query answering in OBDA coNP-hard in data complexity. To regain tractability, we consider a rather general class of queries and show its rewritability to a generalisation of the relational calculus to bags

    Equality-friendly well-founded semantics and applications to description logics

    Get PDF
    We tackle the problem of defining a well-founded semantics (WFS) for Datalog rules with existentially quantified variables in their heads and nega- tions in their bodies. In particular, we provide a WFS for the recent Datalog± family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega- tion in rule bodies, and we define a WFS for this generalization via guarded fixed point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog± with negation under the equality- friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise defi- nitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    On the SPARQL Direct Semantics Entailment Regime for OWL 2 QL

    Get PDF
    OWL 2 QL is the profile of OWL 2 targeted to Ontology-Based Data Access (OBDA) scenarios, where large amount of data are to be accessed and thus query answering is required to be especially efficient in the size of such data, namely AC0 in data complexity. On the other hand, the syntax and the semantics of the SPARQL query language for OWL 2 is defined by means of the Direct Semantics Entailment Regime (DSER), which considers queries including any assertion expressible in the language of the queried ontology, i.e., both ABox atoms, TBox atoms and inequalities expressed by means of DifferentIndividuals atoms. Thus, in this paper, we investigate query answering over OWL 2 QL under DSER. In particular, we show that, by virtue of the restricted meaning assigned to existential variables and union, query answering can be reduced to the evaluation of a Datalog program. Finally, we investigate query answering under a new SPARQL entailment regime, called Direct Semantics Answering Regime (DSAR), obtained by modifying DSER in such a way that existentially quantified variables are assigned the classical logical meaning, and provide an algorithm for answering queries over OWL 2 QL ontologies under DSAR, that is AC0 in data complexity, for a class of queries comprising both TBox atoms, ABox atoms and inequalities

    Abstraction in ontology-based data management

    Get PDF
    In many aspects of our society there is growing awareness and consent on the need for data-driven approaches that are resilient, transparent, and fully accountable. But in order to fulfil the promises and benefits of a data-driven society, it is necessary that the data services exposed by the organisations' information systems are well-documented, and their semantics is clearly specified. Effectively documenting data services is indeed a crucial issue for organisations, not only for governing their own data, but also for interoperation purposes. In this thesis, we propose a new approach to automatically associate formal semantic descriptions to data services, thus bringing them into compliance with the FAIR guiding principles, i.e., make data services automatically Findable, Accessible, Interoperable, and Reusable (FAIR). We base our proposal on the Ontology-based Data Management (OBDM) paradigm, where a domain ontology is used to provide a semantic layer mapped to the data sources of an organisation, thus abstracting from the technical details of the data layer implementation. The basic idea is to characterise or explain the semantics of a given data service expressed as query over the source schema in terms of a query over the ontology. Thus, the query over the ontology represents an abstraction of the given data service in terms of the domain ontology through the mapping, and, together with the elements in the vocabulary of the ontology, such abstraction forms a basis for annotating the given data service with suitable metadata expressing its semantics. We illustrate a formal framework for the task of automatically produce a semantic characterisation of a given data service expressed as a query over the source schema. The framework is based on three semantically well-founded notions, namely perfect, sound, and complete source-to-ontology rewriting, and on two associated basic computational problems, namely verification and computation. The former verifies whether a given query over the ontology is a perfect (respectively, sound, complete) source-to-ontology rewriting of a given data service expressed as a query over the source schema, whereas the latter computes one such rewriting, provided it exists. We provide an in-depth complexity analysis of these two computational problems in a very general scenario which uses languages amongst the most popular considered in the literature of managing data through an ontology. Furthermore, since we study also cases where the target query language for expressing source-to-ontology rewritings allows inequality atoms, we also investigate the problem of answering queries with inequalities over lightweight ontologies, a problem that has been rarely addressed. In another direction, we study and advocate the use of a non-monotonic target query language for expressing source-to-ontology rewritings. Last but not least, we outline a detailed related work, which illustrates how the results achieved in this thesis notably contributes to new results in the Semantic Web context, in the relational database theory, and in view-based query processing

    Well-Founded Semantics for Extended Datalog and Ontological Reasoning

    Get PDF
    The Datalog± family of expressive extensions of Datalog has recently been introduced as a new paradigm for query answering over ontologies, which captures and extends several common description logics. It extends plain Datalog by features such as existentially quantified rule heads and, at the same time, restricts the rule syntax so as to achieve decidability and tractability. In this paper, we continue the research on Datalog±. More precisely, we generalize the well-founded semantics (WFS), as the standard semantics for nonmonotonic normal programs in the database context, to Datalog± programs with negation under the unique name assumption (UNA). We prove that for guarded Datalog± with negation under the standard WFS, answering normal Boolean conjunctive queries is decidable, and we provide precise complexity results for this problem, namely, in particular, completeness for PTIME (resp., 2-EXPTIME) in the data (resp., combined) complexity
    corecore