1,802 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    On gait as a biometric: progress and prospects

    No full text
    There is increasing interest in automatic recognition by gait given its unique capability to recognize people at a distance when other biometrics are obscured. Application domains are those of any noninvasive biometric, but with particular advantage in surveillance scenarios. Its recognition capability is supported by studies in other domains such as medicine (biomechanics), mathematics and psychology which also suggest that gait is unique. Further, examples of recognition by gait can be found in literature, with early reference by Shakespeare concerning recognition by the way people walk. Many of the current approaches confirm the early results that suggested gait could be used for identification, and now on much larger databases. This has been especially influenced by DARPA’s Human ID at a Distance research program with its wide scenario of data and approaches. Gait has benefited from the developments in other biometrics and has led to new insight particularly in view of covariates. Equally, gait-recognition approaches concern extraction and description of moving articulated shapes and this has wider implications than just in biometrics

    Recognizing complex faces and gaits via novel probabilistic models

    Get PDF
    In the field of computer vision, developing automated systems to recognize people under unconstrained scenarios is a partially solved problem. In unconstrained sce- narios a number of common variations and complexities such as occlusion, illumi- nation, cluttered background and so on impose vast uncertainty to the recognition process. Among the various biometrics that have been emerging recently, this dissertation focus on two of them namely face and gait recognition. Firstly we address the problem of recognizing faces with major occlusions amidst other variations such as pose, scale, expression and illumination using a novel PRObabilistic Component based Interpretation Model (PROCIM) inspired by key psychophysical principles that are closely related to reasoning under uncertainty. The model basically employs Bayesian Networks to establish, learn, interpret and exploit intrinsic similarity mappings from the face domain. Then, by incorporating e cient inference strategies, robust decisions are made for successfully recognizing faces under uncertainty. PROCIM reports improved recognition rates over recent approaches. Secondly we address the newly upcoming gait recognition problem and show that PROCIM can be easily adapted to the gait domain as well. We scienti cally de ne and formulate sub-gaits and propose a novel modular training scheme to e ciently learn subtle sub-gait characteristics from the gait domain. Our results show that the proposed model is robust to several uncertainties and yields sig- ni cant recognition performance. Apart from PROCIM, nally we show how a simple component based gait reasoning can be coherently modeled using the re- cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging, logic and graphs. We have discovered that face and gait domains exhibit interesting similarity map- pings between object entities and their components. We have proposed intuitive probabilistic methods to model these mappings to perform recognition under vari- ous uncertainty elements. Extensive experimental validations justi es the robust- ness of the proposed methods over the state-of-the-art techniques.

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance

    Human gait recognition using preprocessing and classification techniques

    Get PDF
    Biometric recognition systems have been attracted numerous researchers since they attempt to overcome the problems and factors weakening these systems including problems of obtaining images indeed not appearing the resolution or the object completely. In this work, the object movement reliance was considered to distinguish the human through his/her gait. Some losing features probably weaken the system’s capability in recognizing the people, hence, we propose using all data recorded by the Kinect sensor with no employing the feature extraction methods based on the literature. In these studies, coordinates of 20 points are recorded for each person in various genders and ages, walking with various directions and speeds, creating 8404 constraints. Moreover, pre-processing methods are utilized to measure its influences on the system efficiency through testing on six types of classifiers. Within the proposed approach, a noteworthy recognition rate was obtained reaching 91% without examining the descriptors

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    Adaptive fusion of gait and face for human identification in video

    Full text link
    Most work on multi-biometric fusion is based on static fusion rules which cannot respond to the changes of the environment and the individual users. This paper proposes adaptive multi-biometric fusion, which dynamically adjusts the fusion rules to suit the real-time external conditions. As a typical example, the adaptive fusion of gait and face in video is studied. Two factors that may affect the relationship between gait and face in the fusion are considered, i.e., the view angle and the subject-to-camera distance. Together they determine the way gait and face are fused at an arbitrary time. Experimental results show that the adaptive fusion performs significantly better than not only single biometric traits, but also those widely adopted static fusion rules including SUM, PRODUCT, MIN, and MAX.<br /
    corecore