7 research outputs found

    Privacy-Preserving Trajectory Data Publishing via Differential Privacy

    Get PDF
    Over the past decade, the collection of data by individuals, businesses and government agencies has increased tremendously. Due to the widespread of mobile computing and the advances in location-acquisition techniques, an immense amount of data concerning the mobility of moving objects have been generated. The movement data of an object (e.g. individual) might include specific information about the locations it visited, the time those locations were visited, or both. While it is beneficial to share data for the purpose of mining and analysis, data sharing might risk the privacy of the individuals involved in the data. Privacy-Preserving Data Publishing (PPDP) provides techniques that utilize several privacy models for the purpose of publishing useful information while preserving data privacy. The objective of this thesis is to answer the following question: How can a data owner publish trajectory data while simultaneously safeguarding the privacy of the data and maintaining its usefulness? We propose an algorithm for anonymizing and publishing trajectory data that ensures the output is differentially private while maintaining high utility and scalability. Our solution comprises a twofold approach. First, we generalize trajectories by generalizing and then partitioning the timestamps at each location in a differentially private manner. Next, we add noise to the real count of the generalized trajectories according to the given privacy budget to enforce differential privacy. As a result, our approach achieves an overall epsilon-differential privacy on the output trajectory data. We perform experimental evaluation on real-life data, and demonstrate that our proposed approach can effectively answer count and range queries, as well as mining frequent sequential patterns. We also show that our algorithm is efficient w.r.t. privacy budget and number of partitions, and also scalable with increasing data size

    PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries with Full Security

    Get PDF
    The private heavy-hitters problem is a data-collection task where many clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients\u27 inputs. The recent work of Poplar constructed a protocol for private heavy hitters but their solution was susceptible to additive attacks by a malicious server, compromising both the correctness and the security of the protocol. In this paper, we introduce PLASMA, a private analytics framework that addresses these challenges by using three data-collection servers and a novel primitive, called verifiable incremental distributed point function (VIDPF). PLASMA allows each client to non-interactively send a message to the servers as its input and then go offline. Our new VIDPF primitive employs lightweight techniques based on efficient hashing and allows the servers to non-interactively validate client inputs and preemptively reject malformed ones. PLASMA drastically reduces the communication overhead incurred by the servers using our novel batched consistency checks. Specifically, our server-to-server communication depends only on the number of malicious clients, as opposed to the total number of clients, yielding a 182Ă—182\times and 235Ă—235\times improvement over Poplar and other state-of-the-art sorting-based protocols respectively. Compared to recent works, PLASMA enables both client input validation and succinct communication, while ensuring full security. At runtime, PLASMA computes the 1000 most popular strings among a set of 1 million client-held 32-bit strings in 67 seconds and 256-bit strings in less than 20 minutes respectively

    Mobile Phones as Cognitive Systems

    Get PDF
    corecore