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Abstract

Over the past decade, the collection of data by individuals, businesses and government 

agencies has increased tremendously. Due to the widespread of mobile computing and 

the advances in location-acquisition techniques, an immense amount of data concerning 

the mobility of moving objects have been generated. The movement data of an object 

(e.g. individual) might include specific information about the locations it visited, the time 

those locations were visited, or both. While it is beneficial to share data for the purpose 

of mining and analysis, data sharing might risk the privacy of the individuals involved 

in the data. Privacy-Preserving Data Publishing (PPDP) provides techniques that utilize 

several privacy models for the purpose of publishing useful information while preserving 

data privacy.

The objective of this thesis is to answer the following question: How can a data owner 

publish trajectory data while simultaneously safeguarding the privacy of the data and main-

taining its usefulness? We propose an algorithm for anonymizing and publishing trajectory 

data that ensures the output is differentially-private while maintaining high utility and 

scalability. Our solution comprises a twofold approach. First, we generalize trajectories by 

generalizing and then partitioning the timestamps at each location in a differentially-private 

manner. Next, we add noise to the real count of the generalized trajectories according to 

the given privacy budget to enforce differential privacy. As a result, our approach achieves 

an overall ε-differential privacy on the output trajectory data. We perform experimental 

evaluation on real-life data, and demonstrate that our proposed approach can effectively 

answer count and range queries, as well as mining frequent sequential patterns. We also
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show that our algorithm is efficient w.r.t. privacy budget and number of partitions, and also

scalable with increasing data size.
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Chapter 1

INTRODUCTION

1.1 Motivation

Over the past decade, the collection of data by individuals, businesses and government

agencies has increased tremendously. While it is beneficial to share data for the purpose of

mining and analysis, data sharing might risk the privacy of the individuals involved in the

data. Privacy-reserving data publishing (PPDP) [32] provides techniques that utilize several

privacy models for the purpose of publishing useful information while preserving data

privacy. Unlike differential privacy [25], other privacy models such as k-anonymity [94],

l-diversity [63] and t-closeness [59] do not fully protect against attacks that are based

on the prior knowledge of the adversary about individuals in data. Such attacks include

table-linkage attacks, attribute-linkage attacks, and probabilistic attacks. On the other

hand, differential privacy overcomes such attacks and makes no assumptions about the

background knowledge an adversary may have, and does not reveal the participation of

an individual in the published data [116]. In this thesis, our goal is to achieve differential

privacy guarantee on the published data.

Due to the widespread of mobile computing and the advances in location-acquisition

techniques, an immense amount of data concerning the mobility of moving objects have

been generated. The movement data of an object (e.g. individual) might include specific

information about the locations it visited, the time those locations were visited, or both. In
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general, the origin of movement data can be the mobility of either people, vehicles, animals

or natural phenomena [115]. Furthermore, movement data can be broadly classified into

sequential and trajectory data. Sequential data contains a set of sequences, where each

sequence lists in chronological order the locations visited by a moving object. On the

other hand, the movement of an object in a trajectory data is represented as a sequence of

doublets (l, t) representing the location l that was visited at timestamp t. In this thesis, we

consider the problem of publishing vehicle trajectory data.

1.2 Challenges & Concerns

While trajectory data can be used to perform several mining tasks, including trajectory

pattern mining, trajectory classification and trajectory outlier detection [115], publishing

trajectory data imposes several concerns.

A major concern is data privacy. The application of typical privacy models such

as [94][63][59] via privacy-preserving data publishing techniques on trajectory data does

not protect the published data against privacy attacks, which include:

• Background knowledge attacks, where an adversary utilizes its background knowl-

edge about an individual in the trajectory data to infer sensitive information about

said individual.

• Probabilistic attacks, where an adversary can infer the presence or absence of an

individual’s trajectory in the published trajectory data.

Example 1.2.1 illustrates the privacy concern in trajectory data publishing.

Example 1.2.1. Let Table 1.1 represent a raw trajectory dataset which comprises of eight

trajectories, each of which is linked to a sensitive attribute. Table 1.2 represents a 2-
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Table 1.1: Raw trajectory data

Index Trajectory
T1 c1→ b2→ c4→ d5
T2 b5→ d8→ a10
T3 a2→ b3→ e5→ b7
T4 e6→ a7→ c9
T5 b3→ e5→ c9
T6 e6→ a7→ c9→ d10
T7 a1→ b2→ d4→ e5
T8 a3→ b7→ d8

Table 1.2: 2-anonymous trajectory data based on Table 1.1

Index Anonymous Trajectory
T̂1 b3→ e5
T̂2 e6→ a7→ c9
T̂3 b3→ e5
T̂4 e6→ a7→ c9

anonymous version of the raw data. If an adversary knows that an individual visited

location b at timestamp 3, the adversary can determine from Table 1.2 that either trajectory

T̂1 or trajectory T̂3 represents that individual. As a result, the adversary can infer with 100%

confidence that the individual visited location e at timestamp 5, given that doublet e5 exists

in both trajectories. Moreover, if the sensitive attributes associated with T̂1 and T̂3 are the

same, then the adversary can perform homogeneity attack and infer with 100% confidence

the sensitive attribute of that individual. Otherwise, it will be able to infer the sensitive

attribute with 50% confidence. �

Another concern with respect to publishing trajectory data is high-dimensionality. Tra-

jectories might consist of a long sequence of doublets, thus increasing the dimensionality

of the data. As a result, publishing trajectory data will typically produce low utility output

due to the curse of high dimensionality [23].
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Example 1.2.2. Assume that a metro system runs between 50 stations for 22 hours every

day. The number of doublets that can be possibly generated based on the possible locations

and timestamps are 50 ∗ (22 ∗ 3600) = 3, 960, 000 doublets (assuming accuracy is to the

second), which also represents the total possible dimensions in the data. �

Another concern with respect to publishing trajectory data is sparseness. For example,

in a taxi trajectory data, a taxi can visit only a few locations over a period of time, which

results in the raw data being sparsely populated as each trajectory consists of a small subset

of all possible doublets. Also, a trajectory of any taxi can contain a limited number of

doublets because a taxi can be at only one location at a given time. Sparseness and high

dimensionality in raw data typically leads to reduction in size in the anonymized output

due to the suppression of trajectories, as illustrated in Example 1.2.3.

Example 1.2.3. Due to the sparsity and high dimensionality of the doublets in Table 1.1,

the 2-anonymous data in Table 1.2 contains only 4 trajectories, even though the raw data

contains 8 trajectories. �

Extensive research [79][89][74][1][17][95] has been done regarding movement data

sharing while preserving the privacy of the individuals involved, mostly using differential

privacy[11][30][49][46][85]. One such research [46] for applying differential privacy to

publish trajectory data, aims to generalize the trajectories by generalizing the locations and

adding noise to the number of occurrences of trajectories to ensure differential privacy.

The approach we propose in this thesis also applies the differential privacy model and is

distinct from the previous approaches because it provides high utility for count queries,

range queries, and frequent sequential pattern mining. More specifically, in this thesis,

we propose an algorithm for anonymizing and publishing trajectory data, such that the

output is differentially-private while maintaining high utility. Our solution comprises of a
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twofold approach. In the first phase (Phase 1), we generalize trajectories by generalizing

and partitioning the timestamps at each location while guaranteeing differential privacy.

In the next phase (Phase 2), we add noise to the real count of the generalized trajectories

to ensure differential privacy. As a result, our approach achieves an overall ε-differential

privacy on the output trajectory data.

1.3 Thesis Statement

The objective of this thesis is to answer the following question: How can a data owner

publish its trajectory data while simultaneously safeguarding the privacy of the data

and maintaining its usefulness?

More specifically, given a trajectory dataset D = {T1, T2, T3....T|D|} and a privacy

budget ε, the goal of this thesis is to propose an approach for generating and publishing

an anonymized version of the data D̂ for the purpose of data mining and analysis such that:

1. The published data D̂ satisfies differential privacy.

2. The published data D̂ maintains high utility.

3. The proposed approach is efficient and scalable.

1.4 Organization of the Thesis

This Thesis is organized as follows:

• Chapter 2 discusses the background knowledge needed for a better understanding of

the terms used throughout this thesis.
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• Chapter 3 discusses the related literature over the past years in the fields related to

publishing and mining movement data and other types of data, via differential privacy

or other privacy models.

• Our algorithm for publishing trajectory data using differential privacy is proposed in

Chapter 4. We discuss in detail the proposed algorithms and how differential privacy

is achieved over different steps before the data can be published.

• Chapter 5 discusses the properties of the datasets we use to perform our experiments.

We test the performance of the proposed algorithms by measuring its scalability,

efficiency and utility over two trajectory datasets.

• We conclude the thesis in Chapter 6 with a discussion about future work.
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Chapter 2

BACKGROUND

We begin this section by a presenting an overview of movement data (trajectory and sequen-

tial), and then we introduce differential privacy as a mechanism for data anonymization.

2.1 Movement Data

Movement data represents the actual movement of an individual over a period of time. It

is essential to effectively hide the identity of the individuals in the movement data before

the data is shared. This has led to a vast amount of research in the field of movement

data publishing in general. Over the last few years, after the authors of [25] introduced

the concept of differential privacy, research has changed focus to publishing movement

data using differential privacy. Movement data is typically presented as either trajectory

or sequential data. Since our approach is designed mainly for trajectory data, we will

introduce the notations that we will be using through the rest of this thesis.

Definition 2.1.1. Trajectory. A trajectory Ti represents information about the displace-

ments of an individual i, wherein time t is taken into account and the trajectory can be

represented as a series of doublets:

Ti = (l1, t1)→ (l2, t2)→ (l3, t3)→ ....→ (l|Ti|, t|Ti|) (2.1)



8

where each doublet comprises of a timestamp tj and a location lj , and doublets in a

trajectory are ordered chronologically according to their timestamps. �

Definition 2.1.2. Trajectory data. Trajectory data D is a set of trajectories owned by a

data owner, and represented as:

D = {T1, T2, T3....T|D|} (2.2)

where each trajectory Ti represents an individual. �

2.2 Differential Privacy

We begin this section by introducing differential privacy. We discuss the concept of sensi-

tivity and the mechanisms that exist for achieving ε-differential privacy, namely exponential

mechanism and Laplace mechanism.

2.2.1 ε-Differential Privacy

Differential privacy [25], proposed by Cynthia Dwork, aims to achieve a strong guar-

antee that the presence or absence of an individual cannot be inferred when analyzing

differentially-private published data, regardless of the background of the attacker.

ε-differential privacy is an extension of the general idea of differential privacy, where ε

is the privacy budget (privacy parameter) that controls the level of privacy provided when

differential privacy is applied to a raw dataset.
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Definition 2.2.1. ε-Differential Privacy [25]. A randomized functionK provides ε-differential

privacy if for all datasetsD1 andD2 differing in at most one record, and all possible outputs

S ⊆ Range(K), then:

Pr [K(D1) ∈ S] 6 exp (ε) × Pr [K(D2) ∈ S] (2.3)

where parameter ε is the privacy level. �

Note that privacy budget ε affects privacy and accuracy (and therefore utility) of the

generated differentially-private data such that a lesser value of εmeans stronger privacy but

also poor utility.

Sensitivity

Mechanisms such as noise addition and exponential mechanism are utilized in order to

achieve differential privacy. However, the effectiveness of such mechanisms depends on

data sensitivity. Sensitivity can be informally defined as the maximum possible change

in the utility function when a single record is either removed, added, or altered. More

formally:

Definition 2.2.2. Sensitivity [25]. Given a function f : D → Rd over a domain D, the

sensitivity of f is defined as:

∆(f) = max
D1,D2

‖ f(D1) - f(D2) ‖ (2.4)

where D1 and D2 are neighboring datasets that differ in a maximum of one record. �

Sensitivity varies depending on the type of data, which affects the utility of the output

since it is impacted by the level of noise added.
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Exponential Mechanism

McSherry and Talwar [67] proposed a technique to achieve differential privacy using ex-

ponential mechanism. Exponential mechanism determines the outcome by taking as input

the score q (Utilityeach) generated by the utility function, the dataset D, an output range Γ

and privacy budget ε. The outcome is chosen with the following probability:

exp ε
2∆u

(Utilityeach)∑All
i=1

ε
2∆u

(Utilityi)
(2.5)

where ∆u is the sensitivity of the utility function.

The exponential mechanism results in the probability distribution over the output range

Γ. Sampling is done over this probability distribution in order to obtain an output. As seen

in equation 2.5, the probability of any output is directly proportional to exp ε
2∆u

(Utilityeach),

which means it is directly proportional to the score value of the utility. This leads us to the

theorem 2.2.1 from [67].

Theorem 2.2.1. For any function having utility score Utility, an algorithm that chooses

an output with probability directly proportional to exp ε
2∆u

(Utility) satisfies ε-differential

privacy. �

Adding Laplace Noise

Dwork et al. [25] proposed Laplace mechanism to obtain differential privacy by adding

noise. It begins by first computing the true solution to a given function over a dataset D.

The value obtained is distorted by adding to it a noise from the Laplace distribution. Given

a function f(D) where D is original data, after applying Laplace mechanism to add a noise,

the noisy value for the function is represented as follows:
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f(D′) = f(D) + Lap(λ) (2.6)

where Lap(λ) represents the Laplace noise sampled from Laplace distribution having prob-

ability density function (PDF):

Pr(x‖λ) =
1

2λ
exp(−|x|/λ) (2.7)

, where variance is 2λ2 centered at 0.

Theorem 2.2.2. [25] Given a function f : D→ Rd, the algorithm that adds Laplace noise

with probability distribution Lap(∆f/ε) to each d output will always satisfy ε-differential

privacy. �

2.2.2 (ε, δ)-Differential Privacy

Data can be said to be differentially-private when a participant’s data is altered (added/re-

moved) in the considered dataset which leads to a minute change in the generated differentially-

private data.

For input data D to a randomized algorithm K, the random variable corresponding to

D is K(D). The probability of the event is not similar as compared to more probable

events, under the distribution K(D1) and K(D2) because the metric in differential privacy

is multiplicative.

This necessary condition for differential privacy was later relaxed in following research

and (ε,δ)-differential privacy is a more relaxed differential privacy model as compared to

the ε-differential privacy that is a stronger privacy guarantee nonetheless. (ε, δ)-differential

privacy is defined as :
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Definition 2.2.3. (ε, δ)-Differential Privacy: A randomized algorithmK is (ε,δ)-differentially-

private if for all databases D1, D2 ∈ (D)n that varies in one individual’s records:

Pr [K(D1) ∈ S] 6 exp(ε) × Pr [K(D2) ∈ S] + δ (2.8)

, where S represents all subsets of outputs. [58]. �

Note that when δ = 0, Equation 2.8 represents ε-differential privacy.

2.2.3 εi-Differential Privacy

The authors in [68] discuss two techniques for guaranteeing privacy in the case of multiple

data releases.

(
∑

i εi)-Differential Privacy: When there is a sequential series of analysis (release),

each of which satisfies ε-differential privacy, then the sum of ε values can be added to

generate (
∑

i εi)-Differential Privacy. (
∑

i εi)-Differential Privacy is also referred to as

sequential composition.

(maxi εi)-Differential Privacy: In the case of maxi εi)-differential privacy, unlike

sequential composition, structurally disjoint subsets of the data are analyzed. This disjoint

(parallel) subset’s sequence of analysis provides (maxi εi)-differential privacy, which is

also referred to as parallel composition.

2.3 Differential Privacy Guarantee

Differential privacy, introduced in [26] is different from previous privacy definitions which

attempt to prevent data leakage and disclosure, as well as other privacy violations. Differ-
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ential privacy aims at preventing attackers from obtaining knowledge about the presence of

an individual’s records in a published data. It provides a strong guarantee that the presence

or absence of of an individual record will have no effect on the result of analysis on the

published data. In other words, the result to a query on a differentially-private dataset

will remain almost the same with the presence or absence of an individual. Essentially,

differential privacy provides ε privacy guarantee such that for an appropriate ε value, a

mechanism K (see Equation 2.3) satisfies the definition of differential privacy. If the input

datasets are almost identical in various randomized computations, the outcome distribution

will also be nearly identical.

The authors in [34] state that unlike previous ad-hoc guarantees that provided security

against only certain attacks, differential privacy provides an ad-omnia guarantee. Also,

since differential privacy is able to provide a rigid because it is independent of the compu-

tational power of the adversary and their knowledge of any background information [26].

This suggests that differential privacy achieves privacy over data through uncertainty, i.e.

via randomization. Therefore, it isn’t possible for any output to reveal a single individual’s

data with certainty.

Table linkage attack is possible if the data recipient is able to confidently determine

whether the individual’s record exists in the released data table. Since differential privacy

guarantees that presence or absence of an individual’s record in the original data will have

no significant effect on the generated output, this privacy model guarantees against the

possibility of a table linkage attack.

In [56], however, the authors suggest that without any knowledge or assumption about

the data, when differential privacy is applied to social networks, or when deterministic

statistics have been previously released, the privacy guarantee could possibly degrade. This

led to the development of new techniques for maintaining differential privacy guarantee in
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Figure 2.1: Interactive vs non-interactive frameworks of differential privacy.

the case of complex data publishing scenarios (see Section 3.2 for more details).

2.4 Interactive Differential Privacy

Instead of the data owner publishing its data in a differentially-private manner (non-interactive),

the data miner/analyst could pose queries directly to the data owner. Figure 2.1 illustrates

the interactive and non-interactive frameworks of differential privacy. The system could be

already aware of all the queries that will be posed by the data miner in advance and it could

take the appropriate measures to make the data private. However, in most cases (interactive

queries), the system would respond to the posed ad-hoc queries without any knowledge

of the queries or any insight into the future. Privacy-preserving query processing is the

task wherein queries posed over statistical data are answered by injecting random noise to

each of the responses to guarantee the privacy of an individual by making their presence or

absence in the data unclear. A number of techniques have been proposed for predetermined
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query processing [112][52], as well interactive query processing [70][31].

Privacy-preserving data mining is the task of mining information from a data wherein

the data owner is responsible for maintaining the privacy guarantee in the answers sent to

the data miners. A vast amount of research has proposed privacy-preserving data mining

techniques under differential privacy [31][44][2][44][82] and non-differential privacy [29].

Privacy-preserving data analysis is the set of tasks where the published or mined data is

analyzed by a set of analysis algorithms performed by data analysts, while maintaining

efficient privacy guarantees with reference to the privacy of individual’s records in the

data. A number of papers have proposed privacy-preserving data analysis techniques under

differential privacy [80][28][40][41][53][65][103][70] [69].



16

Chapter 3

LITERATURE REVIEW

Below, we review the most relevant research work in the literature.

3.1 Privacy-Preserving Data Publishing

Privacy-preserving data publishing (PPDP) provides the tools and methods for publishing

data while preserving the privacy of the entities stored in the data, as well as maintaining

utility of the anonymized published data. Distributed privacy-preserving data publishing

(DPPDP) is a decentralized version of PPDP where multiple parties are involved in the

process of data publishing. In the literature, several privacy mechanisms including k-

anonymity [94], l-diversity [63], t-closeness [59] and differential privacy [25] have been

suggested to publish various types of data. However, k-anonymity and differential pri-

vacy have been the most widely utilized mechanisms for publishing movement data while

maintaining the privacy of the moving objects stored in the data.

3.1.1 via Differential Privacy

Differential privacy was introduced by Dwork et al. [25] for privacy-preserving data publi-

cation. Differential Privacy Preserving Data Publishing (PPDP) can be implemented using

a number of techniques. In this section we categorize the proposed techniques based on the

type of the input data.
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Publishing Movement Data

Over the past years, there has been an extensive research for publishing movement data,

which includes trajectory and sequential data. Lately, there have also been several works

in the fields of trajectory data publishing [11][30][49][46][85], sequential data publish-

ing [16][13][43], and trajectory and sequential data publishing [15].

An approach to publish differentially-private time series data for traffic monitoring was

proposed in [30]. The authors introduced two estimation algorithms: the first applies

posterior estimation, and for the cells onto which it was applied, a time-series quadtree

model is generated. Based on this quadtree model, the second algorithm groups similar

cells to generate spacial indexing structure and hence reduces the impact of data sparsity

on the approach. Jiang et al. [49] proposed another approach for time-series data which

applied sphere sampling with the addition of noise. They introduce an approach called

sampling distance and direction (SDD) which applies exponential mechanism for sampling

the next location to be published in a trajectory.

Another approach for publishing trajectory data was introduced in [46], which is an

improvement to the techniques proposed in [15][13]. While the previous approaches as-

sume the trajectories have a number of common prefixes or n-grams which might not

be true for all data, the approach in [46] does not make this assumption. The authors

introduced a differentially-private location generalization algorithm which generalizes all

trajectories to merge any locations that have the same timestamps. This algorithm applies

exponential mechanism to recursively choose from the partitions of the location universe

at each timestamp, where the clustering approach that generated the partition replaces the

locations in the same cluster by their centroid. Next, they introduce another algorithm

to publish these generalized trajectories in a differentially-private manner, by generating
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new trajectories based on the generalized locations, and finally publishing the noisy counts

after the addition of Laplace noise. Riboni et al. [85] proposed a technique that integrated

differential privacy and pre-filtering process, explicitly for protecting check-in data so an

untrusted adversary is unable to infer check-in details shared by other individuals. Their

approach primarily publishes a single version of the differentially-private data by enforcing

(L, j)-density. They further extend this approach for incremental release by extracting (L,

j)-private statistics from the dataset that had previously enforced (L, j)-density. They further

apply Laplace mechanism to add Laplace noise depending on the locations visited that were

pruned. Another approach proposed by [11] introduces l-trajectory privacy where only

certain trajectories published are differentially-private, which is determined by the desired

length of the trajectory.

Chen et al. [13] acknowledged the drawback of [15] that the number sequences repre-

sented in each branch of the prefix tree reduces considerably, thus resulting in poor utility

overall. Therefore, they introduce a technique for probabilistic prediction which represents

sequential data as variable length n-grams; which is similar to (n-1)-order Markov Chain

Model. Their technique incorporates the addition of Laplace noise to achieve differential

privacy. To limit the noise added, they employ an exploration tree that performs adaptive

budget allocation and also enforces consistency constraints based on Markov assumption.

The technique suggested in [43] proposes an algorithm to synthesize GPS trajectories

(without timestamps) using hierarchal reference systems (HRS) model. The HRS captures

correlations between adjacent locations in regular trajectories and is designed for realistic

data which has large spatial domains. DPT inputs a uniformly distributed sample of the

sequence of locations (latitude-longitude pairs) and applies Laplace mechanism to add

Laplace noise and then outputs differentially-private synthetic trajectories.

The authors in [15][16] proposed a differentially-private data sanitization approach for
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trajectory data and sequential data. The proposed algorithm inputs raw trajectory data,

privacy budget ε and the height of the prefix tree, and publishes the sanitized data that

satisfies ε-differential privacy. The noisy prefix tree PT is constructed by a function in

the sanitization algorithm by recursively grouping trajectories in the data into disjoint

subsets based on their prefix and employs a set of count queries. Another function of

the sanitization algorithm applies a utility boosting technique on PT and generates the

sanitized data in a differentially-private manner. The approach supports both count queries

and frequent sequential pattern mining.

Publishing Non-Movement Data

The authors in [72] present an ε-differentially-private anonymization algorithm called Diff-

Gen that relies on generalization and specialization. Given privacy budget ε, ε/2 is assigned

to the generalization and specialization process, while the other ε/2 is utilized to add

Laplace noise before publishing. Taxonomy trees are used for specialization, where the

taxonomy tree represents the predefined hierarchy of the categorical attributes, whereas

for numerical attributes split points are adaptively determined. DiffGen algorithm begins

by generalizing each quasi-identifier attribute in the raw data to its topmost value in the

corresponding taxonomy tree, where a root node is created and all data records are assigned

to this node. Next, a sequence of specializations is performed where the records at the

parent node split into disjoint child nodes. Two utility functions, InfoGain and Max,

are used for determining the score of specialization of each attribute in the parent node.

Exponential mechanism utilizes the heuristic functions and a part of the privacy budget

to determine the attribute for specialization in a differentially-private manner. At each

level i, a part of the generalization and specialization budget ε/2 is consumed, where each

iteration at the same level in the hierarchy consumes the same privacy budget due to the
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parallel composition property. Finally, after ‘h’ number of specializations, ε/2 is added to

the remaining budget from the specialization steps for computing the noisy count of each

leaf node. If the noisy count is greater than or equal to the given threshold value, then those

records will be published. The authors in [71] extended the DiffGen algorithm from [72]

by designing a securely two-party protocol for publishing vertically-partitioned data while

satisfying differential privacy.

Barak et. al. [7] combined the privacy mechanism in [28] with the technique they

propose to obtain strong privacy, accuracy and consistency in the published data and hence

publish a set of marginals from the contingency table. They proposed an algorithm to

achieve privacy by applying Laplace noise to the data, which is converted to privacy-

protective intermediate data. If the publisher releases this intermediate data, the privacy is

preserved. To maintain accuracy and consistency, the approach adds noise by transforming

the data to Fourier domain which encodes the data as the marginals in a non-redundant way.

Linear programming is then applied to generate a non-negative contingency table having

Fourier coefficient values and later, for integrality, the results are rounded up. Also, the

approach suggests that Fourier domain is not necessarily employed, instead, the marginals

can directly be perturbed and then linear programming can be used; but in this scenario,

the published data might not be as accurate as when Fourier domain is used. Although

their focus lies on generating and maintaining a balance between privacy, accuracy and

consistency, the proposed algorithm for obtaining differential privacy validates a balance

between obtaining privacy, accuracy and consistency.

Yang et. al. [108] extends the research of [7] through application of the technique on

a number of examples; if there is a possibility of making sensible inferences based on the

published data, the extent to which these inferences can be made. Based on the results

obtained, they conclude that the proposed technique is unsuitable for publishing large,
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sparse contingency tables. On the other hand, [104] considers application of probabilistic

inference to the measurements and measurement process of obtaining differentially-private

data. They conclude by stating that probabilistic interference and differential privacy are

complementary lines of research and application of probabilistic interference improves

accuracy, integrates multiple observations and measures uncertainty.

Hardt et. al. [42] [40] propose an algorithm – MWEM for publishing differentially-

private data. MWEM combines the concept of exponential mechanism with Multiplicative

Weights update rule to achieve ε-differential privacy by posing queries non-interactively

using exponential mechanism for selecting the best scoring result from the distribution and

Laplace mechanism for reporting measurements as approximate sums of bounded functions

and addition of Laplace noise; where sum is the result of a linear query on the dataset.

Next, multiplicative weights update rule is applied as used in [41] and [39] by continuously

improving the approximate distribution. It suggests that, if a query’s result on true data is

much greater than on approximate data, the approximating weights on the records that are

contributing positively should be increased and the approximating weights on the records

that are contributing negatively should be reduced, and vice versa if a query’s response on

true data is much less than on approximate data.

The authors of [18] present an algorithm F-BCQT (Filter-Build Consistency Quadtree)

for two-dimensional sparse data publication which boosts the accuracy of range queries on

the published data. The algorithm consists of two parts: First, two side filter algorithm

is used to compress the dataset and obtain the sampling dataset from the original two-

dimensional sparse dataset. Next, the incomplete quadtree is built based on the sampling

dataset, where a quadtree is such a tree data structure whose each internal node has exactly

four child nodes. The Filter algorithm hides the true location of the original dataset based

the incomplete quadtree. The second part of the algorithm compresses the data, and then
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adjust the noise under consistency between tree nodes. They employ BLUE (Best Linear

Unbiased Estimator) algorithm to adjust the values of nodes for adjusting any inconsis-

tencies existing between father and child nodes. They further experimentally analyze the

algorithm by comparing it to the previously proposed algorithms for checking the accuracy

of range queries on the published data.

A fairly new approach to achieve differential privacy on tabular data was introduced by

[91], where they combine a technique to achieve k-anonymity privacy model with differ-

ential privacy, for enhancement of utility of published data. To reduce the Laplace noise

that is added for achieving ε-differential privacy, noise must be added to the k-anonymous

version of the dataset, which is achieved by micro-aggregation of all attributes. While

we consider D to be the dataset input in the algorithm, Dε represents the differentially-

private version of dataset D. To improve the utility of Dε, the algorithm comprises of two

steps: First, k-anonymous data set D̄ is generated from D by using micro-aggregation

like MDAV[22] with the assumption that all attributes are QI attributes (quasi-identifier).

Next, k-anonymous dataset D̄ generates ε-differentially-private dataset Dε based on the

ε-differentially-private response to the posed queries. The idea behind possibility of im-

provement in utility by using k-anonymity is that unlike when differential privacy is directly

applied for a number of individuals, this technique applies for groups. Also, the sensitivity

is considerably low when this technique is applied since each record in published dataset

D̄ depends on at least k or more records in original dataset D.

The authors of [71] proposed distributed differentially-private anonymization algo-

rithm DistDiffGen to publish vertically partitioned data, where two publishers possess

different attributes of the same participants. The proposed approach is an extension of

DiffGen algorithm proposed by [72], with an addition of distributed exponential mechanism

for analyzing the candidate score pairs and generating the winner based on the definition of
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exponential mechanism. This winner candidate is later used for specialization. Addition-

ally, this approach uses addition of Gaussian noise for privacy protection against the other

publisher and Laplace noise for achieving differential privacy.

In [6], the authors propose an approach to publish horizontally partitioned data, where

a part of the data is held by two publishers. They present an algorithm for obtaining the

winner candidate by applying exponential mechanism in a two-party scenario. While this

algorithm can be used as a sub-algorithm in any algorithm, they apply it on their two-party

algorithm similar to [71]. Finally, Laplace noise is added by each party for maintaining

differential privacy while exchanging data.

The paper [14] introduces an algorithm based on probabilistic top-down specialization

approach to obtain ε-differential privacy on set-valued data, by applying differentially-

private sanitization algorithm DiffPart. DiffPart performs the first step of its top-down

partitioning algorithm by performing generalization of all records iteratively till a single

root partition is reached. Further, the sub-partitions are generated recursively until leaf par-

tition is reached, based on the taxonomy tree representation and non-empty sub-partitions

are further re-partitioned, for which either exponential or Laplace mechanisms can be em-

ployed. However, they claim that exponential mechanism leads to a smaller privacy budget

allocation for each operation since it does not consider the composition property even under

the circumstances when all sub-partitions contain disjoint datasets and this leads to less

accurate results; Therefore, the proposed mechanism uses Laplace mechanism. Finally, for

each leaf partition that is greater than a predetermined size, DiffPart adds the noisy number

of records in that partition based on its noisy size, to publish the differentially-private data.

The authors of [114] propose an algorithm–IncTDPart for incrementally publishing

a series of differentially-private datasets. The proposed technique employs Top-down

partitioning/top-down specialization (TDS) by means of taxonomy tree and update-bounded
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sanitization mechanism. The approach is similar to the TDS technique and employs Diff-

Part algorithm proposed by [14] for publishing static set-valued data, differing in the fact

that there exists an incremental release mechanism that has prior knowledge about the

maximum number of updates that will be permitted, making the mechanism U-bounded.

Such a scenario where data is published incrementally is further discussed in Section 3.2.

The authors of [20] discuss the problems of big data research in terms of analysis,

archiving and reusing the data and generation of results. The problems discussed include,

the fact that big data analysis needs to be performed on cloud therefore unusual expertise is

essential, also the large datasets pose an increased risk of revealing personally identifiable

information. They then discuss solutions to contain these challenges for publishing and

analysis of big data by application of differential privacy.

The paper [96] discusses the issues with publication of two-dimensional datasets us-

ing differential privacy by use of methods like construction of a hierarchy of partitions

which cannot be implemented for high dimensional datasets or by using a one or two level

equi-width grid over data domain which is not suitable for skewed datasets. They also

propose a technique as their solution to the discussed problems which uses private h-tree

which makes use of a two level tree and a data dependent method. h-tree requires less

budget for node counts since its height is deliberately kept low, which leads to more budget

being assigned for median partitioning. The paper proposes a recursive budget strategy

for minimizing the noise added, by reducing the number of median splits from linear to

logarithmic, since the splitting points are selected in a differentially-private manner. The

experimental evaluation of this approach on real-world and synthetic datasets demonstrated

that the proposed approach is better than existing approaches, especially in the case of

skewed datasets having outliers.

The authors of [107] introduce DPCube which is the component in Health Informa-
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tion DE-identification (HIDE) framework, and makes use of differentially-private access

mechanisms and two-phase multidimensional partitioning strategy for publishing multidi-

mensional data cubes or multidimensional histograms for sensitive data. HIDE framework

is used for integrating heterogeneous structured and unstructured health information and

includes techniques for PPDP. The multidimensional data cubes and histograms published

by DPCube achieve good utility in a differentially-private manner. The paper demonstrates

that the data cubes published using DPCube is differentially-private version of the raw

dataset, and the published data can be used for On-line Analytical Processing (OLAP)

queries and learning mechanisms.

The paper [73] discusses that the existing solutions for publishing relational and set-

valued data and propose an algorithm to publish it for health-care data in a differentially-

private manner. The proposed method differs from the existing methods by adding noise

after generalizing the records, instead of generating a contingency table for addition of

noise. The flow that the proposed technique follows is that raw data is generalized first and

next, optimal noise is added to guarantee differential privacy. Additionally, they build a

decision tree classifier from the differentially-private published dataset to demonstrate the

utility of the published data. The experimental evaluation of the technique showed that it

is scalable and has efficient performance, although the utility might be affected when the

domain size of the output is very large.

3.1.2 via Other Privacy Models

Prior to introduction of differential privacy, data publishing research primarily encom-

passed a number of other privacy-preserving models including k-anonymity [87][88], l-

diversity [64] and t-closeness [61]. Each of these privacy models provide one or more
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privacy guarantees for the published data as detailed in [34] where each mentioned tech-

nique is explored in detail and shows each of their respective limitations.

Publishing data with k-anonymous privacy guarantee, the record of an individual is

hidden by grouping records that have the same Quasi-Identifiers, with k number of records.

There has been a lot of research on k-anonymity and can be explored in [36][35][45][77][93].

Since k-anonymity assumes that each record represents a distinct individual, it provides

little privacy to a group of k records being owned by fewer than k owners. To overcome this

issue in k-anonymity, (X,Y)-anonymity [98] was introduced. k-anonymity based privacy

models rely on formation of group, but if the records in the assigned group consist of

sensitive attributes having similar values, the adversary could perform attribute linkage

attack i.e. infer an individual’s sensitive value based on the values received from the entire

group and singling out the individual thereby eliminating privacy guarantees. To avoid

this, further research was done which gave rise to privacy-preserving models that could

potentially defend against attribute linkage.

One of the most noted of these contributions was l-diversity that guarantees every quasi-

identifier group will have at lease l sensitive attributes. In [64][54][57][102], techniques

were proposed to achieve l-diversity and recursive (c,l)-diversity (an improvement over

l-diversity). l-diversity, while a significant improvement over k-anonymity, has its own

drawbacks–each sensitive attribute taking values uniformly being one of them. To avoid

this, other privacy models were proposed to prevent attribute linkage that could be achieved

even in l-diversity. These include confidence bounding [100][99], (X,Y)-privacy [98], (a,k)-

anonymity [105], (k,e)-anonymity [112] and t-closeness. One of the most noteworthy

of them being t-closeness, implemented by [61][92][10][84][60] which provides great

privacy guarantee in the published data. In addition to these models, other set of privacy

models were being researched on that would provide privacy guarantees in cases where
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previous models would fail. One such case would be when an attacker might not know an

individual’s record in dataset, but might confidently be able to infer the presence or absence

of an individual’s record in published data. To overcome this table linkage, techniques that

implemented privacy guarantees: δ-presence [78][76], (d,γ)-privacy [83], distributional

privacy [8] and ε-differential privacy [26][24][27] were employed. Additionally, to reduce

an attacker’s probabilistic belief about an individual changes once they have received access

to the published data, a number of other privacy models were implemented. [12] introduced

(c,t)-isolation privacy model, (d,γ)-privacy by [83], distributional privacy introduced by [8]

and ε-differential privacy by [26][24][27] were a few among said models.

[34] then discusses publishing complex data in multiple scenarios and the ongoing

research in each field. The primary research for these complex publishing scenarios can

be found in–multiple release [109][55][7], sequential release [98][88][93], continuous re-

lease [9][106][33] and collaborative release [101][50][51]. [34] then explores the privacy

guarantees in each scenario prior to introduction of differential privacy by Cynthia Dwork

[26][27].

Other than these, trajectory and sequential data publication using k-anonymity can

be broadly classified as follows: generalization [79][89][74], spacial translation [1] and

suppression [17][95]. Research on publishing trajectory data using k-anonymity started

when Nergiz et al. [79] proposed a generalization based approach combined with ran-

dom reconstruction of the original dataset from anonymization. Spacial translation was

applied by Abul et al.. [1] to publish trajectory data with (k,δ)-anonymity guarantee, which

suggests that since trajectories are uncertain and can be represented in 3D space, each of

the trajectories may have (k − 1) other trajectories with δ nearness. Another approach

was proposed by Chen et al. [17] where they incorporate local and global suppression

to trajectory data. They conclude that local suppression which removes certain instances
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from the dataset provides better utility as compared to global suppression that removes all

the occurrences of the item from the dataset. Other research [37] focuses on publishing

movement data by ensuring LK-privacy. They ensure utility of published data using

probabilistic flow-graph for anonymization.

The distinction between the approaches for publishing movement data are specified in

Table 5.1.
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3.2 Complex Data-Publishing

The discussion so far in all the previous sections has been on reporting data anonymization

and publishing for a single release. While this is crucial, in real-world applications, data

publishing and release are not facile to achieve. That is, the data could be made up

sections that were anonymized separately; and every record of this data may therefore

each have its own ε values and different values of noise added. Additionally, the real-world

differentially-private data could be released multiple times with minor changes in the its

records. When publishing such complex data under practical and real-world applications

of data publishing, special attention is needed in the implementation phase based on the

category of data. The following subsections consider such extended publishing scenarios

for complex data publishing [34]. Table 3.2 summarizes the various specifics of these

extended data release scenarios. The three publishing scenarios are discussed in the sub-

sections below. In order to further elaborate, we discuss the techniques used to achieve

those publishing scenarios.

3.2.1 Multiple Data Publishing

During the release of a dataset, said dataset might not be completely required by all the data

miners. Multiple releases can be scheduled by dividing the complete dataset into a number

of smaller dataset views based on what part of the dataset a particular data miner might

be interested in. Such a release can be scheduled by taking the repercussions of partial

data release into consideration. One of the major concerns with such an approach will be

that the attacker could combine these views to obtain more specific data which might have

had not been available previously. Since, in this case, the data publisher will be unable to

foresee or prevent when an attacker obtains more than one view of the dataset. [34]
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Definition 3.2.1. Multiple Data Publishing. Let D be a dataset owned by data owner AD.

For each data release request R by a data miner U, AD publishes a subset dataset DR

satisfying R. �

Fung et. al.[34] suggested that privacy is preserved in multiple data releases by anonymiz-

ing using k-anonymity and l-diversity approaches. In [26], [7] differential privacy is used

for anonymizing in the case of Multiple data publishing. Barak et al. [7] summates

multiple release issue in differential privacy and the threats the marginals (subsets of the

original dataset) would potentially lead to. Their study provides a formal guarantee for

preserving privacy, accuracy and consistency in the published marginals/subsets. They

propose an approach for maintaining Differential Privacy is a 3 step process where the

dataset is transformed into the Fourier domain. Differential privacy is then applied on the

transformed data, to which linear programming is then applied, to finally obtain a result in

a non-negative contingency table. The application of differential privacy on transformed

data is obtained by perturbation while from the Fourier coefficient values, the resulting

contingency table that consists of no negative values is obtained. The proposed technique

affects neither the accuracy nor the consistency of the dataset during the entire process.

The research in [28] further substantiates the use of contingency tables and marginals

and compares it to histogram data, to determine the noise that will be added to prove the

efficiency of the proposed mechanism.

3.2.2 Incremental Data Publishing

We comprise sequential and continuous data publishing as Incremental data publishing.

In the sequential data-publishing scenario, the data publisher knows the datasets D1 to

Dn−1 that were published previously and would like to publish Dn, where Di is an updated

version ofDi−1. While sequential anonymization presumes that the dataset does not update
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dynamically and remains static throughout, the continuous data publishing on the other

hand presumes that the data updates dynamically with time; this is the major difference

between otherwise similar sequential and continuous anonymization. Another distinction

between sequential and continuous data publishing is that in continuous data publishing all

the data that is published belongs to the same database schema, while all the data that is

released is a projection of the same database in the case of sequential data publishing [34].

Incremental update is similar in meaning to sequential data-publishing, and can be defined

as any update to an existing dataset where each of these updates may differ either on a wide

range or on a very minute scale.

Definition 3.2.2. Incremental Data Publishing Given a dataset D that is continuously

updated, the data owner AD publishes D1, D2, ..., Dn such that each published dataset is

an updated version of D. �

The paper [34] cites research for achieving sequential and continuous data-publishing

by techniques like k-anonymity, (X,Y)-anonymity, l-diversity and m-invariance. These

techniques, however, are not primarily aimed at differentially-private data. The techniques

for incremental release are published in [86] and [113] with each technique relating to

a different type of data like set-valued data[113], check-in data[86]. [86] presents the

technique for providing differential privacy over check-in data to protect spatio-temporal

data from the untrusted third parties who have access to the data, and from other users who

might infer locations visited by other users, with the help of pre-filtering process. Their

research is further extended for incremental release of this check-in data. [113] proposed

an algorithm IncTDPart for publishing incrementally updating scenario on set-valued data.

This algorithm generates a series of differentially-private releases like in [86]. The algo-

rithm uses Top-down partitioning based on the generated item-free taxonomy tree.
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Table 3.2: Properties of various Complex Data Publishing Scenarios

Data Publishers Status of the data Published Data Data
Recipients

Single Multiple Static
Dynamic Type Count

Update Add/Delete Subset Whole Single Multiple Single Multiple
Multiple

Data Publishing • • • • •

Incremental
Data Publishing • • • • • • •

Collaborative
Data Publishing • • • • • • • • •

3.2.3 Collaborative Data Publishing

The publishing scenarios discussed above considered the data to originate from a single

publisher. Although collaborative data publishing realizes that in real-world scenarios,

there might be cases where multiple publishers are present. In such scenarios, the release

mechanism fails to identify how these multiple publishers interact with each other and

the system on the whole. The interactions can be classified mainly into: multiple data

publishing organizations that share data or subsets of data with other organizations in ex-

change for their data, multiple publishers that release the data to a Third-party organization

and multiple individuals who individually publish their own record to an organization that

collects data from such varied sources.

Definition 3.2.3. Collaborative Data Publishing Given datasets D1, D2, ..., Dn owned by,

the data owners A1
D1 , A2

D2 , ..., AnDn , such that the data owners collaboratively publish

their datasets. �

This is discussed further in [90][81][66], where the techniques for collaborative release

are portrayed. The paper [90] considers untrusted aggregator to learn over multiple par-

ticipant’s data in a differentially-private manner. The proposed technique that lets a group

of participants to upload a sequence of encrypted data values to the aggregator. Which

in turn, permits the aggregator to summate all the values uploaded in a time period, but

does not provide the aggregator permission to be able to learn anything else from the data
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values. Although this might not directly be a data publishing scenario, [90] demonstrates

how a collaborative scenario works. [81] presents a technique that can be used by a

third party organization as per the scenarios listed above. They propose a combination of

differential privacy and secret sharing in the same system for protecting the privacy of data

publishers with the privacy of individuals whose records might be in the data. Differing

in the number of publishers and data miners, [66] presented a technique for secure data

exchange between two parties where both parties act as a data publishers and the joint data

is made differentially-private while preserving the privacy of both datasets.

3.3 Privacy Preserving Data Mining

Privacy-preserving data mining (PPDM) is another related field for data sharing which

focuses on mining information from a shared data. While mining, the privacy of the entities

involved needs to be maintained and not be disclosed to the data miner who may also be

an adversary. The goal of PPDM is to preserve the privacy while mining from the dataset.

There has been vast literature [3][4][5][48] for data mining while preserving the privacy of

data, which has been discussed in detail in the survey [2][62] by Agarwal et al. and [97] by

Verykios et al..

Distributed privacy-preserving data mining (DPPDM) is a decentralized version of

PPDM where multiple parties are involved in the process of data mining on distributed data.

Over the past years, there has been vast research [19][62] on distributed data mining. We

refer the reader to [2] for in depth discussion about the literature on PPDM and DPPDM.
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Chapter 4

PROPOSED ALGORITHM

We propose a solution for publishing trajectory data in a differentially-private manner. We

apply partitioning to generalize the timestamp occurrences in the original doublets in order

to generate differentially-private doublets and therefore differentially-private trajectories.

Partitioning is applied over timestamps that occurred at the location.

Distinct timestamps that exist for each location in the trajectory data is initially rep-

resented as a cluster. Next, each of these clusters containing timestamps are subdivided

into 2len(clus)−1 partition-cases to further generalize the existing timestamps based on the

obtained partitioning results. The score of each of these partitioning-cases are generated

based on the utility function we introduce. Based on the utility score, each partitioning-case

is sampled using exponential mechanism, and the newly generated timestamp becomes the

representative of the previously existing timestamps in the partitioning-case. Next, for all

locations, we generate new trajectories by replacing the actual timestamps in the original

data. To achieve differential privacy before publishing the data, Laplace noise is added to

the count of newly generated trajectories.

In Figure 4.2.(a), we portray an example in which a location cluster consisting of 3

unique timestamps, where timestamps 1 and 7 are repeated 2 times each. We demonstrate

all the possible partitioning-cases (2n−1) for this cluster. In the figure, Internal (<- ->) and

External (↔) number of Gaps and number of occurrences of Gaps are represented.
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1(2)           3(1)             7(2)Case 1:

Case 2: 1(2) 3(1)          7(2)

Case 3: 1(2)       3(1) 7(2)

Case 4: 1(2) 7(2)3(1)

(b)

        1 
   1                   3

   7                     
                         7

L1

(a)

Figure 4.1: (a) original cluster for 3 unique timestamps with different counts and (b)
possible partitioning-cases (2n−1 = 4) for this cluster, and Internal (<- ->) and External
(↔) number of Gaps and number of occurrences of Gaps

Our initial approach for partitioning the timestamps was highly dependent on the num-

ber of timestamps that exist in the cluster. This led to an infeasible number of partitioning

cases.

Example 4.0.1. If we have a cluster of 20 timestamps at a given location, our approach

will partition these timestamps and generate 220−1 partitioning cases. And if we have 50

different locations each having 20 timestamps, we need to generate 50 ∗ 219 = 26214400

partitioning cases over which we need to calculate utility and input into exponential mech-

anism. �

To overcome this problem, we introduce a differentially-private sub-algorithm which

incorporates differential privacy on existing timestamps at each location in order to choose

the best θ pivot ranges, where θ is the number of pivots and is equal to size of cluster
α

(α varies

from 2 to 10). We begin by generating disjoint ranges for these timestamps, such that each

range is represented by the count of timestamps within that range. By applying exponential

mechanism, we choose the top θ pivot points based on the counts of these ranges, where

a higher count represents better utility. Once these pivot points are determined, we apply

a greedy approach to generate disjoint partitions including all timestamps before the pivot.
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PivotL = <t2, t4> Lany

TL = <t1, t2, t3, t4, t5> Lany

Generate Pivot exp(Ɛ/3)

Generate Ranges

PRangesL = <(0, t2], (t2, t4]> Lany

Generate Clusters

{Clus1, Clus2} = <t1, t2>, <t3, t4, t5> Lany

For each cluster

Clus1 = <t1, t2> Lany Clus2 = <t3, t4, t5> Lany

Generate 2|Clus2|-1 partitioning cases

PC1 = {{t1} {t2}} PC2 = {t1, t2} PC1 = {{t3} {t4} {t5}} PC2 = {{t3, t4} {t5}} PC3 = {{t3} {t4 ,t5}} PC4 = {t3, t4 ,t5}

PC = {{t3, t4} {t5}} Lany

T  = < {t1} {t2} {t3, t4} {t5} > Lany

Use exp(2Ɛ/3) to determine winning partition Use exp(2Ɛ/3) to determine winning partition

Generate 2|Clus1|-1 partitioning cases

Combine winning timestamps

PC = {{t1} {t2}} Lany

Figure 4.2: The process of generating pivot timestamps and partitioning

For the last pivot, all timestamps after will be included. Our algorithm is then incorporated

on these partition cases for each pivot individually, thus drastically reducing the number of

partitioning cases generated.

Example 4.0.2. Given a cluster of 20 timestamps, at a certain location our approach will

generate 10 pivot elements, which if distributed evenly in the cluster would mean that

approximately 22−1 ∗ 10 = 20 partition cases are generated. If we have 50 locations, each

of which having 20 timestamps, and they all have pivot elements distributed evenly through

the cluster, the we need to generate 20 ∗ 50 = 1000 partitioning cases throughout. �

This proves that our sub algorithm makes the partitioning process more feasible while
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maintaining the differential privacy guarantee.

4.1 Solution Overview

The flow of our proposed approach is depicted in the pipeline diagram in Figure 4.3.

The first step is Data Collection (not shown in pipeline diagram), during which the data

owners contribute their data to build the raw trajectory dataset. The privacy-preserving data

publishing process begins by preprocessing (cleaning, proper formatting) the raw trajectory

data. Next, exponential mechanism is applied in Phase 1, which includes generation of

pivot timestamps and partitioning. Next, in Phase 2, Laplace mechanism is used to add

noisy values to the real count of each trajectory in the raw data. From the differentially-

private anonymizer, the differentially-private trajectory data is published. The trajectory

data published using our approach is suitable for count queries, range queries, and mining

frequent sequential patterns.

Pre-
processing

Noisy count 
generation

(Algorithm 5)

Pivot generation
(Algorithm 2)

Partitioning
(Algorithm 3, 4)

Raw 
Trajectory 

Dataset

Differentially 
Private 

Trajectory 
Dataset

Count Query

Range Query

Frequent 
Sequential Pattern 

MiningPhase 1
Phase 2

Our Contribution

Privacy Preserving Data Publishing Query Answering

Data Miners

DP Anonymizer

Exponential 

Mechanism

Laplace 

Mechanism

Figure 4.3: Pipeline diagram of our proposed approach
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Next, we provide an overview of the proposed algorithms. The main algorithm 1 begins

by generating clusters of timestamps at each unique location, and then executes algorithm 2

to determine the winning partitioning case out of numerous possibilities. A representative

value is then sampled from each partition within winning partitioning cases at each location.

Next, after regenerating the trajectories, we add Laplace noise to the real counts of these

trajectories before publishing the differentially-private trajectory data. The main algorithm

calls upon the cluster generation algorithm 2 in step 2 for each cluster Tlj at location

lj using half of the privacy budget. The cluster generation algorithm uses exponential

mechanism for generating the initial partitions of the cluster and further generates a set of

ordered clusters, based on the pivot ranges generated using threshold θ. This algorithm

calls algorithm 3 for determining the winning partition for each cluster of timestamps, to

return the winning partitioning case to algorithm 1.

When algorithm 3 is called by the cluster generation algorithm, each cluster clusi

in CL is input with the privacy budget 2ε/3. The algorithm 3 generates all possible

partitioning cases for the cluster clusi and computes utility score of each partitioning

case using the utility metrics we propose in algorithm 4. Based on these utility scores,

exponential mechanism is then used to determine the winning partitioning case pcw, which

is returned to algorithm 4.

Algorithm 4 is called by algorithm 3, where the partitioning case pc is the input, and the

algorithm returns the computed utility for pc based on the properties of the timestamps and

partitions in the partition case. These properties include: (i) the gaps between timestamps

which is computed by the difference between adjacent timestamps, (ii) the CountGaps

between timestamps which is the difference between the number of occurrences of ad-

jacent timestamps, (iii) the gaps between partitions which is the difference between the

last and first timestamp of two adjacent partitions respectively. The algorithm computes
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the External Homogeneity which is the homogeneity between partitions and the Internal

Homogeneity, which is the homogeneity between timestamps within partitions for all par-

titions using Standard Deviation. Finally, the algorithm computes the utility score Upc

which is returned to algorithm 3.

For adding Laplace noise, the main Algorithm 1 calls Algorithm 5 over the generalized

dataset D′ using privacy budget ε. This will add noise to the number of occurrences of the

generalized trajectories T ′ in D′. Then Algorithm 5 adds Lap(ε) to the real count of each

trajectory T ′ ∈ D′. The differentially-private data D̂ must be then generated as per the

noisy counts of the trajectories, and D̂ is returned to the main algorithm 1, which publishes

the differentially-private data D̂.

4.2 Algorithms

In this section, we discuss our algorithms in detail for publishing trajectory data while

guaranteeing differential privacy. Algorithm 1 is the main algorithm that inputs the raw

trajectory dataset D and returns differentially-private dataset D̂. This algorithm calls upon

other algorithms 2 and 5 for cluster generation and addition of Laplace noise to the real

count of trajectories, respectively. The algorithms 3 and 4 are called by algorithm 2 for

determining the winning partitioning case and computing the utility score for determining

the winning partitioning cases, respectively.

The main algorithm 1 comprises of all major steps for publishing differentially-private

trajectory data. This algorithm calls upon other algorithms 2 and 5 at different steps to

accomplish their necessary functions. It begins with the generation of all clusters Tl for

each location l ∈ L currently present in the raw data D. Within these clusters, there might

be one or more occurrences of a timestamp t ∈ Tl. The second step in this algorithm
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Algorithm 1 Main algorithm to generate differentially-private trajectories

Differentially-Private Trajectory Data Generation

Input: Trajectory dataset D = {T1, . . . , Tn}, privacy budget B
Output: Differentially-private trajectory dataset D̂

1. Given raw dataset D, determine the set of unique locations: L = {l1, . . . , lm},
and for each location l ∈ L, determine the cluster Tl of all timestamps corre-
sponding to that location. Note that any timestamp t ∈ Tl might have multiple
occurrences.

2. For each location lj ∈ L:

(a) Execute algorithm 2 on Tlj using privacy budget B/2 to determine the best
partitioning case of Tlj in a differentially-private manner. The result is a set
of timestamp partitions (intervals) Plj = {Plj ,1, . . . , Plj ,|Plj

|}.

(b) From each partition Plj ,i ∈ Plj : 1 ≤ i ≤ |Plj |, we uniformly sample a
value vi to be the representative timestamp of Plj ,i.

3. Generate D′ from D such that for each trajectory T ∈ D there is a corresponding
trajectory T ′ ∈ D′, and each timestamp t in every doublet in T is generalized.
That is, for each doublet d(l, t) ∈ T , add doublet d′(l, v) to T ′, where v is the
representative timestamp of t at location l.

4. Execute algorithm 5 over generalized dataset D′ using the remaining privacy
budget B/2 in order to add Laplace noise to real counts of trajectories and
therefore generate differentially-private trajectory data D̂.

5. Return differentially-private trajectory dataset D̂.

calls Algorithm 2 for each location lj ∈ L on the cluster Tlj using half of the assigned

privacy budgetB, in order to determine the best partitioning case for Tlj while guaranteeing

differential privacy. This returns a set of timestamp partitions Plj . For each location

lj ∈ L, a set of representative timestamps vi are uniformly sampled from each timestamp

partition Plj ,i ∈ Plj . The next step of this algorithm generates generalized trajectories
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T ′ ∈ D′ for each trajectory T ∈ D, such that, for each doublet d(l, t) ∈ T , a generalized

doublet d′(l, v) ∈ T ′ is added where v is the representative timestamp of t at the location l.

The fourth step in algorithm 1 calls upon algorithm 5 over the generalized dataset D′

using the remaining half of the privacy budget B for addition of Laplace noise to the real

count of each trajectory T ′ ∈ D′ to generate differentially-private trajectory data D̂. This

differentially-private data D̂ can then be published for data mining and analysis.

Algorithm 2 Choosing differentially-private partitions by exponential mechanism

Partition Generation
Input: Cluster of timestamps T = {t1, . . . , t|T |}, privacy budget ε
Output: Differentially-private partitioning multiset P

1. Compute the score of each timestamp ti ∈ T by applying exponential mechanism
on (ti, Occ(ti)) using ε/3 of the privacy budget, where ti ∈ T and Occ(ti) is the
occurrence of ti in T :

EM(ti, Occti) =
exp ε/3

2∆Occ
(Occ(ti))∑

tj∈T exp
ε/3

2∆Occ
(Occ(tj))

(4.1)

2. Choose top θ timestamps from previous step as the pivot timestamps: PT =
〈pt1, . . . , ptθ〉, where θ = |T |/α, and pti < pti+1 : 1 ≤ i < θ and α can range
from 2 to 10.

3. Generate a set of ordered clusters CL = 〈clus1, . . . , clusθ〉 over PT , where each
cluster clusi ⊆ CL represents the range (pti−1, pti] and pt0 = 0.

4. For each cluster clusi ∈ CL:

(a) Assign each timestamp tj ∈ T to clusi if tj is within the range (pti−1, pti].

(b) Using the remaining privacy budget 2ε/3, partition clusi in a differentially-
private manner using algorithm 3, and add the winning partitioning case to
P .

5. Return P .
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The main algorithm calls upon the partition generation algorithm in step 2, for each

cluster of timestamps T at location lj ∈ L to result in a differentially-private partitioning

multi-set P . The fist step computes the score of each timestamp ti ∈ T having an oc-

currence of Occti via exponential mechanism EM(ti,Occti) using one-thirds of the alloted

privacy budget (see Equation 4.2). This results in timestamps that resulted the best score

(while maintaining differential privacy). The second step stores such timestamps as pivot

timestamps ptx ∈ PT , where x can range from 1 to θ. Here the value of θ is |T |/α, but

in the Chapter 5 we experiment on different values of α between 2 to 10. In the next step,

the algorithm generates a set of ordered clusters clusx ∈ CL for each ptx ∈ PT , such that

that cluster clusi represents all timestamps that may exist in the range (pti−1, pti] with an

exception of pt0 = 0.

Now for each cluster clusi ∈ CL, each timestamp tj ∈ T is assigned to cluster clusi

if the timestamp tj is within the range of (pti−1, pti]. Algorithm 3 is then called upon each

partition clusi ∈ CL using remaining two-thirds of the assigned privacy budget ε. This

algorithm returns the winning partitioning case pcw which is added to the differentially-

private partitioning multi-set P . The algorithm returns P to main algorithm 1.

To determine the winning partition for each clusi ∈ CL, Algorithm 3 is called upon

by Algorithm 2 using the assigned privacy budget ε for this task. The first step generates

all possible partitioning cases PC = pc1, . . . , pcm for the cluster clusi ∈ CL, where

m = 2|clusi|−1. The generation of these partitioning cases are discussed with an example

in Figure 4. The second step calls upon Algorithm 4 for computing the utility score

ui for each partitioning case pci ∈ PC. Exponential mechanism EM(pci, ui) is then

applied, using the privacy budget ε for determining the partitioning case having high scores

(see Equation 4.2). Such partitioning case sampled from the scores generated from the

EM(pc, ui) is the winning partitioning case pcw. This winning partitioning case pcw is
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Algorithm 3 Choosing differentially-private partitions by exponential mechanism

Determining the winning partitioning case

Input: Cluster of timestamps clus, privacy budget ε
Output: Winning partitioning case pcw

1. Generate all possible partitioning cases PC = {pc1, . . . , pcm} from cluster clus,
where m = 2|clus|−1.

2. For each partitioning case pci ∈ PC, compute the utility score ui of pci using
algorithm 4.

3. Using privacy budget ε, apply exponential mechanism on (pci, ui) : 1 ≤ i ≤ m to
determine the winning partitioning case pcw by sampling from the EM(pci, ui)
scores:

EM(pci, ui) =
exp ε

2∆u
(ui)∑

pcj∈clusexp
ε

2∆u
(uj)

(4.2)

4. Return pcw.

returned to Algorithm 2.

Algorithm 4 is used to compute the utility score Upc for each partitioning case pc =

{p1, . . . , pk}. The concept of external gaps and internal gaps are described in Figure 4.

The first step computes the External Gap Homogeneity (EGH) using Standard Deviation

(SD) on external gaps, between adjacent partitions in pc using Equation 4.3. In the next

step, compute External CountGap Homogeneity (EGHOcc) using Standard Deviation (SD)

on the difference between size of each partition |pi| using Equation 4.4. Using EGH and

EGHOcc, we compute the External Homogeneity (EH) as in Equation 4.5.

Next, the algorithm computes the Internal Gap Homogeneity (IGH) using Standard

Deviation on the internal gaps between the distinct and adjacent timestamps for each par-

tition pi ∈ pc using Equation 4.6. We next compute the Internal CountGap Homogeneity
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Algorithm 4 Equations to compute utility of a partitioning case

Utility Score Computation
Input: Partitioning case: pc = {p1, . . . , pk}
Output: Utility score Upc

1. Compute External Homogeneity (EH) using External Gap Homogeneity (EGH) and External CountGap Homogeneity
(EGHOcc):

(a) Calculate External Gap Homogeneity (EGH) using the Standard Deviation on external gaps between adjacent
partitions in pc to determine the overall variance:

EGH = SD
1≤i≤k−1

(pi+1[tfirst]− pi[tlast]) (4.3)

where tfirst and tlast are the first and last timestamps in a partition px.

(b) Next, calculate the External CountGap Homogeneity (EGHOcc) using Standard Deviation on the difference
between size of each partition pi ∈ pc:

EGHOcc = SD
1≤i≤k−1

(|hi+1 − hi|) (4.4)

where hi is the number of timestamps in partition pi.

(c) Compute the External Homogeneity (EH) as:

EH = EGH × EGHOcc (4.5)

2. Compute Internal Homogeneity (EH) using Internal Gap Homogeneity (EGH) and Internal CountGap Homogeneity
(EGHOcc):

(a) Calculate the Internal Gap Homogeneity (IGH) using the Standard Deviation on internal gaps between distinct
adjacent timestamps for each partition pi ∈ pc to determine the amount of variation across it:

IGH =

i=k∑
i=1

SD
1≤j≤hi−1

(|pi[tj+1]− pi[tj ]|) (4.6)

where hi is the number of timestamps in partition pi.

(b) Next, calculate the Internal CountGap Homogeneity (IGHOcc) using Standard Deviation on the difference
between number of occurrences of distinct adjacent timestamps in each partition pi ∈ pc:

IGHOcc =
i=k∑
i=1

SD
1≤j≤hi−1

|Occ(pi[tj+1])−Occ(pi[tj ])| : pi[tj+1] 6= pi[tj ] (4.7)

where p′i is the modified partition pi which contains distinct timestamps from pi and has length li, and
Occ(p′i[tj ]) is the number of occurrences of timestamp p′i[tj ] in pi.

(c) Compute the Internal Homogeneity (IH) as:

IH = IGH × IGHOcc (4.8)

3. Calculate the final Utility Score Upc using the external and internal homogeneities EH and IH computed in Steps 1 and
2:

Upc =
EH

IH
(4.9)

4. Return Upc.
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Algorithm 5 Applying Laplace noise to the original counts of generalized trajectory data

Addition of Laplace Noise

Input: Dataset D′, privacy budget ε
Output: Differentially-private trajectory data D̂

1. For each trajectory Ti ∈ D′, add Laplace noise Lap(ε) to the real count of Ti :
OccTi , using the privacy budget ε.

2. Append each trajectory Ti based on its noisy count Occ′Ti to dataset D̂.

3. Return differentially-private trajectory data D̂

(IGHOcc) between the number of occurrences of distinct and adjacent timestamps for each

partition pi ∈ pc, using 4.7. Next the algorithm computes the Internal Homogeneity (IH)

using Equation 4.8.

In the final step, this algorithm computes the Utility Score (Upc) using the computed

EH and IH in the previous steps. Algorithm 4 returns the computed Upc to algorithm 3

for each partitioning case pc.

The main algorithm 1 calls upon the algorithm 5 over each trajectory T ′ in the gener-

alized dataset D′, using the remaining half of the total privacy budget ε = B/2. For each

trajectory Ti ∈ D′, Laplace noise Lap(ε) is added to its real count OccTi to generate noisy

count Occ′Ti . After the noise is added to each trajectory in the generalized dataset D′ to

generate differentially-private dataset D̂′.
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4.3 Complexity Analysis

We denote by n the number of trajectories and by d the number of doublets in a dataset.

We can determine the time complexity of the proposed approach in terms of these two

notations. Our proposed approach broadly comprises of two main phases: (Phase 1)

generating pivot timestamps and partitioning via exponential mechanism and (Phase 2)

addition of Laplace noise to counts.

The computation for Phase 1 without generating pivot timestamps originally had a time

complexity ofO(2(t−1)) where t is the number of timestamps originally in the cluster. This

led to the introduction of generation of pivot timestamps which reduced the time complexity

of by subdividing the timestamps prior to partitioning. We compute the number of pivot

timestamps θ = |T |
α

, where |T | is the number of timestamps originally in the cluster. The

generation of this pivots led to the generation of sub-clusters each of which is of size ' α.

This reduces the time needed for generation of partitions to O(θ ∗ 2(α−1)) where θ is the

number of pivot timestamps and α is the size of each pivot. Therefore, for all locations in

the dataset, the time complexity for Phase 1 isO(|L| ∗ θ ∗ 2(α−1)), where |L| represents the

number of distinct locations in the dataset. This can be simplified by the knowledge that

the value of α is between 2 to 10, thus 2(α−1) is bounded by a constant. Also, we know

that |L| ∗ θ ≤ d. Therefore the total time complexity for Phase 1 is O(d).

The next step before Phase 2 is the regeneration of generalized trajectories which has

the time complexity of O(d).

Phase 2 comprises of the addition of Laplace noise to the real counts of each raw

trajectory in the generalized data. This phase therefore has a total time complexity of

O(n ∗ k), where n = |T | represents the number of trajectories and k is the time needed for

adding noise to one trajectory (k is constant).
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Thus the total time complexity for our proposed approach is O(n + d), where n repre-

sents the number of trajectories and d represents the number of doublets in the data.
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Chapter 5

EXPERIMENTAL EVALUATION

In this chapter, we discuss the implementaion of our algorithms, including the datasets

used and the experiemental evaluation over the generated differentially-private data. More

specifically, we discuss scalability, efficiency and utility, as well as the complexity of the

approach. The implementation for our solution has been done in Python 2.7 on a Linux

machine with Intel Xeon(R) CPU E5-1620 v4 @ 3.50GHz Processor.

5.1 Datasets

We implement our approach on two datasets of taxi trajectories, whose features are listed

in Table 5.1.

Table 5.1: Properties of Datasets we performed experiments

Dataset # of doublets # of locations # of trajectories
goTrack 18,107 8,394 163
TDrive 10,158,088 97,822 8,890

The first dataset on which we evaluate the performance of our approach is GPS Tra-

jectories Dataset [21]. This dataset is composed of two tables: go track tracks.csv and

go track trackspoints.csv where go track tracks.csv has general attributes and each instance

owns trajectory in the go track trackspoints.csv dataset. This dataset contains about 18,000

doublets. Another dataset that we use to evaluate the scalability and performance of our
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proposed approach is TDrive dataset [110] [111]. It contains more than 10 million doublets

of (location, timestamp) for the trajectories of taxis in Beijing. The original format of

this dataset is ”taxi id, datetime, longitude, latitude”. Through our experiments over

both datasets, we consider each unique ”longitude, latitude” pair as unique locations and

”datetime” pair as timestamp. A pair of such (location, timestamp) is called a doublet.

5.2 Experimental Results

We evaluate the performance of our approach by implementing the proposed solution over

the datasets for the following metrics : scalability, efficiency and utility.

5.2.1 Scalability

We set up our experiments to test the scalability of our approach on the TDrive dataset.

We measure the runtime (RT) with respect to linear increase in # of doublets and # of

trajectories, while setting the value of privacy budget ε to 1. We also set α, the param-

eter determining the number of pivots, to 3. Figure 5.1.a illustrates the when the # of

doublets increases linearly from 1, 000, 000 to 5, 000, 000, while Figure 5.1.b illustrates

the runtime when # of trajectories has a linear growth from 1, 000 to 8, 000, assuming

that the maximum trajectory length is 20. We observe from Figures 5.1.a and 5.1.b that

the total runtime of our algorithm grows linearly when the data size (# of doublets or

# of trajectories) increases linearly. We also observe that Phase1 (generating pivots and

partitioning) is the dominating phase compared to Phase2 (generating noisy trajectories);

however, they both scales linearly w.r.t data size.
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(a) Growth of data (number of doublets)

(b) Growth of data (number of trajectories)

Figure 5.1: Scalability w.r.t. (a) linear growth of number of doublets, and (b) linear growth
of number of trajectories.

5.2.2 Efficiency

We evaluate the efficiency of our proposed approach on the TDrive dataset with respect to

privacy budget-ε and number of pivot timestamps α. Figure 5.2.a illustrates the average

runtime obtained over 10 cycles when the value of ε is increased between 0.25 to 1.5 at an
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(a) Privacy budget ε

(b) Pivot timestamps α

Figure 5.2: Efficiency w.r.t. (a) privacy budget ε, and (b) size of pivot timestamps α,
averaged over 10 cycles.

interval of 0.25. We observe that the runtime remains consistent (around 1525 sec) until ε

is equal to 1, and then starts increasing with a sudden spike to 1610 when the value of ε

reaches 1.25. This anomaly is due to the fact that generated pivots are typically not evenly

spaced out within the cluster, resulting in more than usual runtime needed for Phase-1,

which includes partitioning. Given that the level of noise reduces when the the value of
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ε grows, we conclude from Figure 5.2.a that the optimal value of ε to balance between

efficiency and privacy is 1. Figure 5.2.b illustrates the the average runtime obtained over

10 cycles when the value of α increases from 2 to 8 with an interval value of 2. We observe

that as α increases, the runtime increases accordingly (from 1,524 seconds for α = 2 to

1,565 seconds for α = 8). As a result, we conclude that the lower α is, the better our

algorithm performs.

5.2.3 Utility

Utility is the usability of the output data compared to the original one. The higher the

privacy of the published data is, the lower its utility. In this section, we measure the utility of

the anonymized (differentially-private) published data with respect to count queries, range

queries, and frequent sequential pattern mining. We measure the utility of the output data

for count queries by counting the number of trajectories in which certain randomly-chosen

locations exist in raw data D and output differentially-private data D̂. The error rate (query

distortion) is then computed as follows [47]:

relative error / error rate =
|Q(D̂)−Q(D)|

max(Q(D̂), Q(D))
(5.1)

where Q(D) and Q(D̂) represent the output of count queries on raw data D and anony-

mous data D̂, respectively.

Count Queries

The count queries we set up for our experiments on the differentially-private dataset are

queried over a predetermined number of locations. The number of locations on which the
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(a) (b)

(c) (d)

Figure 5.3: Error rate of anonymized data, where α = 2, and MaxQ is set to 3, 6, 9 and 12.

count query Q1 asks queries, is a random that ranges between the previous value of MaxQ

and current MaxQ.

Figure 5.3 illustrates the change in error rate as the value of the privacy budget ε grows

from 0.25 to 1.5 at an interval 0.25, where the number of pivots α is set to 2 and MaxQ is

set to 3, 6, 9 and 12. The experimental results are generated using both datasets: goTrack

and TDrive. We observe that error rate ranges between 25% to 75%, but decreases with

the increase of ε with respect to both datasets. We also observe that as the value of MaxQ

increases, indicating an increase in the number of locations for which the dataset is queried,
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(a) (b)

(c) (d)

Figure 5.4: Error rate of anonymized data, where α = 4, and MaxQ is set to 3, 6, 9 and 12.

the overall error rate goes down. The worst case error in figure-(a) when MaxQ = 3 is

almost 75% whereas, the worst case error in figure-(b) when MaxQ = 2 is almost 60%. The

highest utility (lowest error rate), i.e. 25% for goTrack dataset and 30% for TDrive dataset,

is reached when ε = 1.25 and MaxQ is 6, 9 or 12. Overall, We notice that the pattern of

changes in error rate rate is consistent for both the datasets w.r.t. privacy budget ε.

Almost similar conclusions about error rate rate can be obtained from Figure 5.4, where

privacy budget ε grows from 0.25 to 1.5 at an interval 0.25, the number of pivots α is set to

4 and MaxQ is set to 3, 6, 9 and 12. This indicates that unlike ε and MaxQ, changes in the
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number of pivots α do not have a direct impact on the utility of the output data with respect

to count queries.

Range Queries

Each range query includes a range of locations within the predetermined radius from the

randomly selected location from the dataset. This query results in the count of trajectories

having one or more of the locations from this range, based on the type of range query. We

have queried using 2 types of range queries: possibly sometime inside (PSI) and definitely

always inside (DAI) [46]. A PSI range query represents the count of trajectories that exist

when a doublet from the range of (location, timestamp) doublets exists within the radius

of a random location. On the other hand, a DAI Range Query represents the count of

trajectories such that all the doublets in the trajectory exist from the range of doublets in

the query.

We use Hausdroff distance [75] to compute the distance between doublets and deter-

mine the locations that are within the said radius of given location. We utilize the algorithm

to compute Hausdroff distance from [38]. The result of a range query is the count of

trajectories. We therefore query over the raw data D and the anonymized data D̂ to generate

resulting Q2(D) and Q2(D̂), respectively. These results are then used to compute the error

rate according to Equation 5.1.

Figure 5.5 demonstrates the results obtained in terms of the change in error rate for

TDrive dataset when the value of ε and α linearly grow, and the radius is set to 0.5. The

range query used is PSI, which means there should be at least one doublet in the trajectory

is the same as the specified range in the query, which means that the locations are within

the Radius = 0.5. In the chart, we notice that the error rate from the range query reduces as

the value of ε grows. Also, the error rate slightly flickers but generally reduces as the value
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Figure 5.5: Error rate across different α and ε values for PSI range queries for TDrive
Dataset where radius = 0.5.

of α increases. Since α is used for determining the number of pivot timestamps to reduce

the complexity of partitioning, the conclusion that utility is not adversely affected by the

change of the value of α is good. The worst case error occurs when both α and ε have the

lowest values. The best case (about 30%) occurs when ε ≥ 1 with not much change in α.

Figure 5.6 demonstrates the result obtained in terms of change in error rate for TDrive

dataset for growing values of α and ε while the radius here is 1.0 using PSI range queries.

We observe that the error rate reduces when the value of ε grows. Also, the error rate

reduces slightly as α increases with some flicker in the values.

Frequent Sequential Pattern Mining

Another set of experiments we have performed to test the utility of the differentially-private

published dataset using our proposed approach is Frequent Sequential Pattern Mining.

Since our approach is specifically for publishing trajectory data, determining the utility
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Figure 5.6: Error rate across different α and ε values for PSI range queries for TDrive
Dataset where radius = 1.0.

of the differentially-private sequences by computing the error generated relative to the

occurrences of those sequences in the raw dataset. The error rate is computed on the

counts of frequent sequences that are beyond a threshold of MinimumSupport on the

raw dataset-D and differentially-private dataset-D̂. This results in the counts of frequently

occurring sequences-Q3(D) and Q3(D̂) for raw and differentially-private dataset. We then

compute the error rate between Q3(D) and Q3(D̂) using the formula-5.1.

In figure 5.7, we demonstrate the results obtained from mining the frequent sequential

patterns on real and noisy goTrack trajectories dataset to generate error rate. For our

experiments, we maintain a constant value for the privacy budget-ε at the optimum value

of 1.25 and a MinimumSupport of 20%. The value of α grows from 2 to 10 with an interval

of 2. We can see that the error rate reduces between 60% to 63% when α grows between 2

to 8. The error rate reduces to about 40% when α is 10. We expected this behavior since

α determines the number of pivot timestamps, thus determining the the randomness added

due to exponential mechanism while partitioning. That is, the greater the value of α, the

less is the number of pivot timestamps. This increases the utility but affects the computation
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Figure 5.7: Error rate across different α values for frequent sequences over TDrive Dataset.

time adversely.



60

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Summary

As information exchange is becoming an integral component for communication among

individuals, companies and government organizations, it has become essential to maintain

a safe framework for data exchange. In this thesis, we thoroughly review recent research

pertaining to privacy-preserving data publishing (PPDP) via differential privacy, and pro-

pose a robust algorithm for publishing trajectory data in a differentially-private manner that

is suitable for count queries, range queries, and frequent sequential pattern mining.

In Chapter 2 we first discuss the preliminaries for movement data. We define and

discuss differential privacy and its variations, and the mechanisms to achieve differential

privacy. We then present the difference between privacy-preserving data publishing and

other interactive privacy-preserving frameworks.

In Chapter 3, we review, discuss and compare existing techniques for achieving differ-

ential privacy. Most of these techniques consider single publishing by a single trusted data

publisher and therefore apply differential privacy for the first release to the first recipient.

We have also assessed and discussed other possible data publishing scenarios and works

that have proposed techniques for publishing data for such complex scenarios, including

multiple publishing, incremental publishing and collaborative data publishing.

In Chapter 4, we proposed a novice technique for publishing trajectory movement data
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that utilizes differential privacy to guarantee the privacy of the individuals involved in the

data, while maintaining the utility of the published data. We propose several algorithms

to compute various steps of achieving differential privacy on the trajectory data. Our

approach maintains high utility by adjusting the value of the privacy budget ε, calibrating a

co-efficient α for determining the number pivot timestamps generated.

In Chapter 5, we examined the performance of our approach in terms of scalability,

efficiency and utility. From the experimental results, we concluded that our approach is

scalable, efficient and provides good utility for count queries, range queries and mining

frequent sequential patterns.

In a nutshell, the main contribution of this thesis is to propose an algorithm for pub-

lishing trajectory data in a differentially-private manner, while guaranteeing scalability,

efficiency and utility of the published data.

6.2 Looking Ahead

One future work is to utilize the distance between locations and incorporate that as a con-

sistency constraint when generalizing trajectories. This will limit possibility of occurrence

of locations in trajectories that might never occur at that sequence. In turn, it would further

enhance the accuracy of the differentially-private published data.

We know that the real count of trajectories in the raw dataset is not equal to the gen-

erated noisy count in the differentially-private dataset using our proposed approach. This

affects the utility of the published dataset; The count queries and range queries do not

seem to face adverse effect due to this. However, when frequent sequential patterns are

mined, the noise added increases the size of the differentially-private dataset as compared

to the raw dataset. These increased numbers of trajectories in the published dataset seem
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to adversely affect the utility of the published data when frequent sequential patterns are

mined. Therefore, another future work is investigate how to ensure that the size of the

anonymized output data is at the same order of the raw data.
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