623 research outputs found

    A hybrid cross entropy algorithm for solving dynamic transit network design problem

    Full text link
    This paper proposes a hybrid multiagent learning algorithm for solving the dynamic simulation-based bilevel network design problem. The objective is to determine the op-timal frequency of a multimodal transit network, which minimizes total users' travel cost and operation cost of transit lines. The problem is formulated as a bilevel programming problem with equilibrium constraints describing non-cooperative Nash equilibrium in a dynamic simulation-based transit assignment context. A hybrid algorithm combing the cross entropy multiagent learning algorithm and Hooke-Jeeves algorithm is proposed. Computational results are provided on the Sioux Falls network to illustrate the perform-ance of the proposed algorithm

    A Consensus-ADMM Approach for Strategic Generation Investment in Electricity Markets

    Get PDF
    This paper addresses a multi-stage generation investment problem for a strategic (price-maker) power producer in electricity markets. This problem is exposed to different sources of uncertainty, including short-term operational (e.g., rivals' offering strategies) and long-term macro (e.g., demand growth) uncertainties. This problem is formulated as a stochastic bilevel optimization problem, which eventually recasts as a large-scale stochastic mixed-integer linear programming (MILP) problem with limited computational tractability. To cope with computational issues, we propose a consensus version of alternating direction method of multipliers (ADMM), which decomposes the original problem by both short- and long-term scenarios. Although the convergence of ADMM to the global solution cannot be generally guaranteed for MILP problems, we introduce two bounds on the optimal solution, allowing for the evaluation of the solution quality over iterations. Our numerical findings show that there is a trade-off between computational time and solution quality

    Does bilevel optimization result in more competitive racing behavior?

    Full text link
    Two-vehicle racing is natural example of a competitive dynamic game. As with most dynamic games, there are many ways in which the underlying information pattern can be structured, resulting in different equilibrium concepts. For racing in particular, the information pattern assumed plays a large impact in the type of behaviors that can emerge from the two interacting players. For example, blocking behavior is something that cannot emerge from static Nash play, but could presumably emerge from leader-follower play. In this work, we develop a novel model for competitive two-player vehicle racing, complete with simplified aerodynamic drag and drafting effects, as well as position-dependent collision-avoidance responsibility. We use this model to explore the impact that different information patterns have on the resulting competitiveness of the players. A solution approach for solving bilevel optimization problems is developed, which allows us to run a large-scale empirical study comparing how bilevel strategy generation (both as leader and as follower) compares with Nash equilibrium strategy generation as well as a single-player, constant velocity prediction baseline. Each of these choices are evaluated against different combinations of opponent strategy selection method. The somewhat surprising results of this study are discussed throughout

    Integer Bilevel Linear Programming Problems: New Results and Applications

    Get PDF
    Integer Bilevel Linear Programming Problems: New Results and Application

    Integer Bilevel Linear Programming Problems: New Results and Applications

    Get PDF
    Integer Bilevel Linear Programming Problems: New Results and Application

    A reducibility method for the weak linear bilevel programming problems and a case study in principal-agent

    Full text link
    © 2018 A weak linear bilevel programming (WLBP) problem often models problems involving hierarchy structure in expert and intelligent systems under the pessimistic point. In the paper, we deal with such a problem. Using the duality theory of linear programming, the WLBP problem is first equivalently transformed into a jointly constrained bilinear programming problem. Then, we show that the resolution of the jointly constrained bilinear programming problem is equivalent to the resolution of a disjoint bilinear programming problem under appropriate assumptions. This may give a possibility to solve the WLBP problem via a single-level disjoint bilinear programming problem. Furthermore, some examples illustrate the solution process and feasibility of the proposed method. Finally, the WLBP problem models a principal-agent problem under the pessimistic point that is also compared with a principal-agent problem under the optimistic point
    • …
    corecore