20 research outputs found

    H.264 Motion Estimation and Applications

    Get PDF

    Optimizations for real-time implementation of H264/AVC video encoder on DSP processor

    Get PDF
    International audienceReal-time H.264/AVC high definition video encoding represents a challenging workload to most existing programmable processors. The new technologies of programmable processors such as Graphic Processor Unit (GPU) and multicore Digital signal Processor (DSP) offer a very promising solution to overcome these constraints. In this paper, an optimized implementation of H264/AVC video encoder on a single core among the six cores of TMS320C6472 DSP for Common Intermediate Format (CIF) (352x288) resolution is presented in order to move afterwards to a multicore implementation for standard and high definitions (SD,HD).Algorithmic optimization is applied to the intra prediction module to reduce the computational time. Furthermore, based on the DSP architectural features, various structural and hardware optimizations are adopted to minimize external memory access. The parallelism between CPU processing and data transfers is fully exploited using an Enhanced Direct Memory Access controller (EDMA). Experimental results show that the whole proposed optimizations, on a single core running at 700 MHz for CIF resolution, improve the encoding speed by up to 42.91%. They allow reaching the real-time encoding 25 f/s without inducing any Peak Signal to Noise Ratio (PSNR) degradation or bit-rate increase and make possible to achieve real time implementation for SD and HD resolutions when exploiting multicore features

    Motion correlation based low complexity and low power schemes for video codec

    Get PDF
    制度:新 ; 報告番号:甲3750号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6121Waseda Universit

    Parallel algorithms and architectures for low power video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 197-204).Parallelism coupled with voltage scaling is an effective approach to achieve high processing performance with low power consumption. This thesis presents parallel architectures and algorithms designed to deliver the power and performance required for current and next generation video coding. Coding efficiency, area cost and scalability are also addressed. First, a low power video decoder is presented for the current state-of-the-art video coding standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver high definition (HD) decoding at low power levels. Additional architectural optimizations such as reducing memory accesses and multiple frequency/voltage domains are also described. An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The highly scalable decoder can tradeoff power and performance across >100x range. Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable high throughput with low coding efficiency cost. A parallel algorithm called the Massively Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and interleaved entropy slices to achieve better throughput-coding efficiency and throughput-area tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a third dimension to tradeoff coding efficiency for power and performance. Finally, joint algorithm-architecture optimizations are used to increase performance and reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel architecture with 80 parallel engines, which together delivers >10x higher throughput than existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in 65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.by Vivienne. Sze.Ph.D

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Reconfigurable Architecture For H.264/avc Variable Block Size Motion Estimation Based On Motion Activity And Adaptive Search Range

    Get PDF
    Motion Estimation (ME) technique plays a key role in the video coding systems to achieve high compression ratios by removing temporal redundancies among video frames. Especially in the newest H.264/AVC video coding standard, ME engine demands large amount of computational capabilities due to its support for wide range of different block sizes for a given macroblock in order to increase accuracy in finding best matching block in the previous frames. We propose scalable architecture for H.264/AVC Variable Block Size (VBS) Motion Estimation with adaptive computing capability to support various search ranges, input video resolutions, and frame rates. Hardware architecture of the proposed ME consists of scalable Sum of Absolute Difference (SAD) arrays which can perform Full Search Block Matching Algorithm (FSBMA) for smaller 4x4 blocks. It is also shown that by predicting motion activity and adaptively adjusting the Search Range (SR) on the reconfigurable hardware platform, the computational cost of ME required for inter-frame encoding in H.264/AVC video coding standard can be reduced significantly. Dynamic Partial Reconfiguration is a unique feature of Field Programmable Gate Arrays (FPGAs) that makes best use of hardware resources and power by allowing adaptive algorithm to be implemented during run-time. We exploit this feature of FPGA to implement the proposed reconfigurable architecture of ME and maximize the architectural benefits through prediction of motion activities in the video sequences ,adaptation of SR during run-time, and fractional ME refinement. The implemented ME architecture can support real time applications at a maximum frequency of 90MHz with multiple reconfigurable regions. iv When compared to reconfiguration of complete design, partial reconfiguration process results in smaller bitstream size which allows FPGA to implement different configurations at higher speed. The proposed architecture has modular structure, regular data flow, and efficient memory organization with lower memory accesses. By increasing the number of active partial reconfigurable modules from one to four, there is a 4 fold increase in data re-use. Also, by introducing adaptive SR reduction algorithm at frame level, the computational load of ME is reduced significantly with only small degradation in PSNR (≤0.1dB)

    Cloud media video encoding:review and challenges

    Get PDF
    In recent years, Internet traffic patterns have been changing. Most of the traffic demand by end users is multimedia, in particular, video streaming accounts for over 53%. This demand has led to improved network infrastructures and computing architectures to meet the challenges of delivering these multimedia services while maintaining an adequate quality of experience. Focusing on the preparation and adequacy of multimedia content for broadcasting, Cloud and Edge Computing infrastructures have been and will be crucial to offer high and ultra-high definition multimedia content in live, real-time, or video-on-demand scenarios. For these reasons, this review paper presents a detailed study of research papers related to encoding and transcoding techniques in cloud computing environments. It begins by discussing the evolution of streaming and the importance of the encoding process, with a focus on the latest streaming methods and codecs. Then, it examines the role of cloud systems in multimedia environments and provides details on the cloud infrastructure for media scenarios. After doing a systematic literature review, we have been able to find 49 valid papers that meet the requirements specified in the research questions. Each paper has been analyzed and classified according to several criteria, besides to inspect their relevance. To conclude this review, we have identified and elaborated on several challenges and open research issues associated with the development of video codecs optimized for diverse factors within both cloud and edge architectures. Additionally, we have discussed emerging challenges in designing new cloud/edge architectures aimed at more efficient delivery of media traffic. This involves investigating ways to improve the overall performance, reliability, and resource utilization of architectures that support the transmission of multimedia content over both cloud and edge computing environments ensuring a good quality of experience for the final user

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints
    corecore