4,251 research outputs found

    The age of information in gossip networks

    Get PDF
    We introduce models of gossip based communication networks in which each node is simultaneously a sensor, a relay and a user of information. We model the status of ages of information between nodes as a discrete time Markov chain. In this setting a gossip transmission policy is a decision made at each node regarding what type of information to relay at any given time (if any). When transmission policies are based on random decisions, we are able to analyze the age of information in certain illustrative structured examples either by means of an explicit analysis, an algorithm or asymptotic approximations. Our key contribution is presenting this class of models.Comment: 15 pages, 8 figure

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Performance Guarantees for Homomorphisms Beyond Markov Decision Processes

    Full text link
    Most real-world problems have huge state and/or action spaces. Therefore, a naive application of existing tabular solution methods is not tractable on such problems. Nonetheless, these solution methods are quite useful if an agent has access to a relatively small state-action space homomorphism of the true environment and near-optimal performance is guaranteed by the map. A plethora of research is focused on the case when the homomorphism is a Markovian representation of the underlying process. However, we show that near-optimal performance is sometimes guaranteed even if the homomorphism is non-Markovian. Moreover, we can aggregate significantly more states by lifting the Markovian requirement without compromising on performance. In this work, we expand Extreme State Aggregation (ESA) framework to joint state-action aggregations. We also lift the policy uniformity condition for aggregation in ESA that allows even coarser modeling of the true environment

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore