20,302 research outputs found

    Optimal Voltage Regulation of Unbalanced Distribution Networks with Coordination of OLTC and PV Generation

    Full text link
    Photovoltaic (PV) smart inverters can regulate voltage in distribution systems by modulating reactive power of PV systems. In this paper, an optimization framework for optimal coordination of reactive power injection of smart inverters and tap operations of voltage regulators for multi-phase unbalanced distribution systems is proposed. Optimization objectives are minimization of voltage deviations and tap operations. A novel linearization method convexifies the problem and speeds up the solution. The proposed method is validated against conventional rule-based autonomous voltage regulation (AVR) on the highly-unbalanced IEEE 37 bus test system. Simulation results show that the proposed method estimates feeder voltage accurately, voltage deviation reductions are significant, over-voltage problems are mitigated, and voltage imbalance is reduced.Comment: IEEE Power and Energy Society General Meeting 201

    Improving the Performance of Low Voltage Networks by an Optimized Unbalance Operation of Three-Phase Distributed Generators

    Get PDF
    This work focuses on using the full potential of PV inverters in order to improve the efficiency of low voltage networks. More specifically, the independent per-phase control capability of PV three-phase four-wire inverters, which are able to inject different active and reactive powers in each phase, in order to reduce the system phase unbalance is considered. This new operational procedure is analyzed by raising an optimization problem which uses a very accurate modelling of European low voltage networks. The paper includes a comprehensive quantitative comparison of the proposed strategy with two state-of-the-art methodologies to highlight the obtained benefits. The achieved results evidence that the proposed independent per-phase control of three-phase PV inverters improves considerably the network performance contributing to increase the penetration of renewable energy sources.Ministerio de Economía y Competitividad ENE2017-84813-R, ENE2014-54115-

    Chance-Constrained ADMM Approach for Decentralized Control of Distributed Energy Resources

    Full text link
    Distribution systems are undergoing a dramatic transition from a passive circuit that routinely disseminates electric power among downstream nodes to the system with distributed energy resources. The distributed energy resources come in a variety of technologies and typically include photovoltaic (PV) arrays, thermostatically controlled loads, energy storage units. Often these resources are interfaced with the system via inverters that can adjust active and reactive power injections, thus supporting the operational performance of the system. This paper designs a control policy for such inverters using the local power flow measurements. The control actuates active and reactive power injections of the inverter-based distributed energy resources. This strategy is then incorporated into a chance-constrained, decentralized optimal power flow formulation to maintain voltage levels and power flows within their limits and to mitigate the volatility of (PV) resources
    corecore