21,689 research outputs found

    Continuous approximations of a class of piece-wise continuous systems

    Full text link
    In this paper we provide a rigorous mathematical foundation for continuous approximations of a class of systems with piece-wise continuous functions. By using techniques from the theory of differential inclusions, the underlying piece-wise functions can be locally or globally approximated. The approximation results can be used to model piece-wise continuous-time dynamical systems of integer or fractional-order. In this way, by overcoming the lack of numerical methods for diffrential equations of fractional-order with discontinuous right-hand side, unattainable procedures for systems modeled by this kind of equations, such as chaos control, synchronization, anticontrol and many others, can be easily implemented. Several examples are presented and three comparative applications are studied.Comment: IJBC, accepted (examples revised

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Parameter switching in a generalized Duffing system: Finding the stable attractors

    Full text link
    This paper presents a simple periodic parameter-switching method which can find any stable limit cycle that can be numerically approximated in a generalized Duffing system. In this method, the initial value problem of the system is numerically integrated and the control parameter is switched periodically within a chosen set of parameter values. The resulted attractor matches with the attractor obtained by using the average of the switched values. The accurate match is verified by phase plots and Hausdorff distance measure in extensive simulations

    Robust Simulation for Hybrid Systems: Chattering Path Avoidance

    Get PDF
    The sliding mode approach is recognized as an efficient tool for treating the chattering behavior in hybrid systems. However, the amplitude of chattering, by its nature, is proportional to magnitude of discontinuous control. A possible scenario is that the solution trajectories may successively enter and exit as well as slide on switching mani-folds of different dimensions. Naturally, this arises in dynamical systems and control applications whenever there are multiple discontinuous control variables. The main contribution of this paper is to provide a robust computational framework for the most general way to extend a flow map on the intersection of p intersected (n--1)-dimensional switching manifolds in at least p dimensions. We explore a new formulation to which we can define unique solutions for such particular behavior in hybrid systems and investigate its efficient computation/simulation. We illustrate the concepts with examples throughout the paper.Comment: The 56th Conference on Simulation and Modelling (SIMS 56), Oct 2015, Link\"oping, Sweden. 2015, Link\"oping University Pres
    • …
    corecore