38,403 research outputs found

    Analysis of switched and hybrid systems - beyond piecewise quadratic methods

    Get PDF
    This paper presents a method for stability analysis of switched and hybrid systems using polynomial and piecewise polynomial Lyapunov functions. Computation of such functions can be performed using convex optimization, based on the sum of squares decomposition of multivariate polynomials. The analysis yields several improvements over previous methods and opens up new possibilities, including the possibility of treating nonlinear vector fields and/or switching surfaces and parametric robustness analysis in a unified way

    Partitioning Procedure for Polynomial Optimization: Application to Portfolio Decisions with Higher Order Moments

    Get PDF
    We consider the problem of finding the minimum of a real-valued multivariate polynomial function constrained in a compact set defined by polynomial inequalities and equalities. This problem, called polynomial optimization problem (POP), is generally nonconvex and has been of growing interest to many researchers in recent years. Our goal is to tackle POPs using decomposition. Towards this goal we introduce a partitioning procedure. The problem manipulations are in line with the pattern used in the Benders decomposition [1], namely relaxation preceded by projection. Stengle’s and Putinar’s Positivstellensatz are employed to derive the so-called feasibility and optimality constraints, respectively. We test the performance of the proposed method on a collection of benchmark problems and we present the numerical results. As an application, we consider the problem of selecting an investment portfolio optimizing the mean, variance, skewness and kurtosis of the portfolio.Polynomial optimization, Semidefinite relaxations, Positivstellensatz, Sum of squares, Benders decomposition, Portfolio optimization

    Resultant of an equivariant polynomial system with respect to the symmetric group

    Get PDF
    Given a system of n homogeneous polynomials in n variables which is equivariant with respect to the canonical actions of the symmetric group of n symbols on the variables and on the polynomials, it is proved that its resultant can be decomposed into a product of several smaller resultants that are given in terms of some divided differences. As an application, we obtain a decomposition formula for the discriminant of a multivariate homogeneous symmetric polynomial

    On Difference-of-SOS and Difference-of-Convex-SOS Decompositions for Polynomials

    Full text link
    In this paper, we are interested in developing polynomial decomposition techniques to reformulate real valued multivariate polynomials into difference-of-sums-of-squares (namely, D-SOS) and difference-of-convex-sums-of-squares (namely, DC-SOS). Firstly, we prove that the set of D-SOS and DC-SOS polynomials are vector spaces and equivalent to the set of real valued polynomials. Moreover, the problem of finding D-SOS and DC-SOS decompositions are equivalent to semidefinite programs (SDP) which can be solved to any desired precision in polynomial time. Some important algebraic properties and the relationships among the set of sums-of-squares (SOS) polynomials, positive semidefinite (PSD) polynomials, convex-sums-of-squares (CSOS) polynomials, SOS-convex polynomials, D-SOS and DC-SOS polynomials are discussed. Secondly, we focus on establishing several practical algorithms for constructing D-SOS and DC-SOS decompositions for any polynomial without solving SDP. Using DC-SOS decomposition, we can reformulate polynomial optimization problems in the realm of difference-of-convex (DC) programming, which can be handled by efficient DC programming approaches. Some examples illustrate how to use our methods for constructing D-SOS and DC-SOS decompositions. Numerical performance of D-SOS and DC-SOS decomposition algorithms and their parallelized methods are tested on a synthetic dataset with 1750 randomly generated large and small sized sparse and dense polynomials. Some real-world applications in higher order moment portfolio optimization problems, eigenvalue complementarity problems, Euclidean distance matrix completion problems, and Boolean polynomial programs are also presented.Comment: 47 pages, 19 figure

    Integrand Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division

    Full text link
    We describe the application of a novel approach for the reduction of scattering amplitudes, based on multivariate polynomial division, which we have recently presented. This technique yields the complete integrand decomposition for arbitrary amplitudes, regardless of the number of loops. It allows for the determination of the residue at any multiparticle cut, whose knowledge is a mandatory prerequisite for applying the integrand-reduction procedure. By using the division modulo Groebner basis, we can derive a simple integrand recurrence relation that generates the multiparticle pole decomposition for integrands of arbitrary multiloop amplitudes. We apply the new reduction algorithm to the two-loop planar and nonplanar diagrams contributing to the five-point scattering amplitudes in N=4 super Yang-Mills and N=8 supergravity in four dimensions, whose numerator functions contain up to rank-two terms in the integration momenta. We determine all polynomial residues parametrizing the cuts of the corresponding topologies and subtopologies. We obtain the integral basis for the decomposition of each diagram from the polynomial form of the residues. Our approach is well suited for a seminumerical implementation, and its general mathematical properties provide an effective algorithm for the generalization of the integrand-reduction method to all orders in perturbation theory.Comment: 32 pages, 4 figures. v2: published version, text improved, new subsection 4.4 adde

    Symmetric tensor decomposition

    Get PDF
    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with these Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the rank

    On Multivariate Cryptosystems Based on Computable Maps with Invertible Decomposition

    Get PDF
    Let K be a commutative ring and K^n be a space over K of dimension n. Weintroduce the concept of a family of multivariate maps f(n) of K^n into itself with invertible decomposition.If f(n) is computable in polynomial time then it can be used as the public rule and theinvertible decomposition provides a private key in f(n) based public key infrastructure. Requirementsof polynomial ity of degree and density for f(n) allow to estimate the complexity of encryption procedurefor a public user. The concepts of a stable family and a family of increasing order are motivatedby the studies of discrete logarithm problem in the Cremona group. The statement on the existenceof families of multivariate maps of polynomial degree and polynomial density of increasing order withthe invertible decomposition is proved. The proof is supported by explicite construction which canbe used as a new cryptosystem. The presented multivariate encryption maps are induced by specialwalks in the algebraically dened extremal graphs A(n;K) and D(n;K) of increasing girth

    Reconstruction Algorithms for Sums of Affine Powers

    Full text link
    In this paper we study sums of powers of affine functions in (mostly) one variable. Although quite simple, this model is a generalization of two well-studied models: Waring decomposition and sparsest shift. For these three models there are natural extensions to several variables, but this paper is mostly focused on univariate polynomials. We present structural results which compare the expressive power of the three models; and we propose algorithms that find the smallest decomposition of f in the first model (sums of affine powers) for an input polynomial f given in dense representation. We also begin a study of the multivariate case. This work could be extended in several directions. In particular, just as for Sparsest Shift and Waring decomposition, one could consider extensions to "supersparse" polynomials and attempt a fuller study of the multi-variate case. We also point out that the basic univariate problem studied in the present paper is far from completely solved: our algorithms all rely on some assumptions for the exponents in an optimal decomposition, and some algorithms also rely on a distinctness assumption for the shifts. It would be very interesting to weaken these assumptions, or even to remove them entirely. Another related and poorly understood issue is that of the bit size of the constants appearing in an optimal decomposition: is it always polynomially related to the bit size of the input polynomial given in dense representation?Comment: This version improves on several algorithmic result

    Computation of sum of squares polynomials from data points

    Get PDF
    We propose an iterative algorithm for the numerical computation of sums of squares of polynomials approximating given data at prescribed interpolation points. The method is based on the definition of a convex functional GG arising from the dualization of a quadratic regression over the Cholesky factors of the sum of squares decomposition. In order to justify the construction, the domain of GG, the boundary of the domain and the behavior at infinity are analyzed in details. When the data interpolate a positive univariate polynomial, we show that in the context of the Lukacs sum of squares representation, GG is coercive and strictly convex which yields a unique critical point and a corresponding decomposition in sum of squares. For multivariate polynomials which admit a decomposition in sum of squares and up to a small perturbation of size ε\varepsilon, GεG^\varepsilon is always coercive and so it minimum yields an approximate decomposition in sum of squares. Various unconstrained descent algorithms are proposed to minimize GG. Numerical examples are provided, for univariate and bivariate polynomials
    corecore