209 research outputs found

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Towards all-optical label switching nodes with multicast

    Get PDF
    Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n

    Label-controlled optical switching nodes

    Get PDF
    Optical networks are evolving from initially static optical circuits and subsequently optical circuit switching towards optical packet switching in order to take advan- tage of the high transport capacity made available by WDM systems in a more °exible and e±cient way. Optically labeling of packets and routing the packets's payload optically under control of its label allows the network nodes to route and forward IP data without having to process the payload, thus keeping it in the optical domain; this is a promising solution to avoid electronic bottlenecks in routers. All-optical label switching can therefore be used to route and forward packets independent of their length and payload bitrate. Several optical signal labeling techniques have been proposed in previous re- search reported in literature; orthogonal labeling and time-serial labeling have been studied in this thesis. This thesis studies two orthogonal modulation label- ing techniques: one based on FSK labels with an IM payload, and another one on SCM labeling for a DPSK modulated payload. A time-serial labeling method based on IM labels with IM or DPSK payload is also presented and studied. The ¯rst two techniques assume electronic processing of the labels in the node, and hence assume that labels can be transmitted at a much lower bitrate than the payload data rate. The third technique assumes all-optical signal processing in the nodes, capable of handling a label at the same bitrate or slightly lower than the payload data. Labels at low bitrate in comparison with the payload bitrate are desirable in systems where the label processing will be conducted in the electrical domain, while labels at the same bitrate as the payload can be used in systems where the processing is conducted in the optical domain, exploiting all-optical processing techniques. These three techniques have been chosen because they are compatible with the existing networks, since the modulation format, bitrates, transmission properties, and other features of the signals are similar to the ones used for commercially available applications. Thus, they can be considered important candidates for migration scenarios from optical circuit switching towards optical burst switching networking. Orthogonal labeling based on FSK/IM is a promising scheme for implementing the labeling of optical signals, and it is the technology of choice in the STOLAS project. This technique o®ers advantageous features such as a relaxed timing de- lineation between payload and label, and ease of label erasure and re-writing of new labels. By using wavelength-agile tunable laser sources with FSK modula- tion capability, wavelength converters, and passive wavelength routing elements, a scalable modular label-controlled router featuring high reliability can be built. In this thesis, several aspects of the physical parameters of an FSK/IM labeling scheme within a routing node have been studied and presented. Optical ¯ltering requires special care, since the combined FSK/IM scheme has a broader spectrum than that of pure intensity modulated signals. The requirements on the limited extinction ratio for the IM signal can be relaxed at low bitrates of the label signal or, alternatively, by introducing data encoding. Optical labeling by using FSK/IM represents a simple and attractive way of implementing hybrid optical circuit and burst switching in optical networks. Architecturally, similar advantages can be mentioned for the second orthogo- nal labeling technique studied in this thesis, based on SCM labels and a DPSK payload. In-band subcarriers carrying low bitrate labels located at a frequency equal to half the bitrate of the payload signal can be inserted introducing only low power penalties. Wavelength conversion can be implemented by using passive highly nonlinear ¯bers and exploiting the four-wave mixing e®ect. This thesis also studies the design of two functional blocks of an all-optical core node proposed in the LASAGNE project, namely the all-optical label and payload separator and the wavelength converter unit for a time-serial labeling scheme. The label and payload processor can be realized exploiting nonlinear e®ects in SOAs. An implementation using polarization division multiplexing to transport the external control light for an IM/IM time-serial scheme was demon- strated. Label and payload processors with self-contained control signals were also demonstrated, either using a DPSK signal to simultaneously transport the payload data and the control signal or inserting a CW dummy in between the label and the payload, which were based on IM-RZ format. A study on single- and multi- wavelength conversion based on FWM in a HNLF was presented. This approach allows transparent wavelength conversion (independent of the data format used) at high bitrates (the nonlinear e®ects in a ¯ber are obtained at ultrafast speeds). The labeling techniques explored have indicated a viable way of migration towards optical burst packet switched networks while signi¯cantly improving the throughput of the routing nodes

    Node design in optical packet switched networks

    Get PDF

    Investigation of wavelength tunable laser modules for use in future optically switched dense wavelength division multiplexed networks

    Get PDF
    This thesis investigates the use of fast wavelength tunable laser modules in future optically switched dense wavelength division multiplexed networks (DWDM). The worldwide demand for increasingly greater broadband access has thus far been satisfied by the use of DWDM networks, enabled by the development of the erbium doped amplifier. However as this demand continues to grow electronic switching at network nodes will become a limiting factor, creating a potential bandwidth mismatch between the fibre capacities and switching capacity. Optical switching has been proposed to overcome this electronic bottleneck and fully utilize the enormous bandwidth offered by fibre. Fast tunable lasers (TLs) are a key technology in this area, enabling fast wavelength switching. Experimental work involving the fast wavelength switching of sampled grating distributed Bragg reflector TL modules is presented. Spurious mode generation during wavelength tuning is shown to cause severe cross-channel interference on other data channels in a DWDM test bed. Bit error rate (BER) results demonstrate that a integrated semiconductor optical amplifier can greatly reduce system degradation caused by asynchronous switching of multiple TLs. This is achieved by optically blanking the laser output during channel transition for a period of 60 ns. Immediately after the blanking period a wavelength drift due to the TL module wavelength locking is found to cause cross channel interference and introduce an error floor >1 e-4 on the BER performance characteristic of an adjacent channel in a 12.5 GHz spaced DWDM network. This drift is characterised, using a selfheterodyne and a filter based approach – Error free performance is subsequently demonstrated by using an extended blanking period of 260 ns or by using subcarrier multiplexing transmission and phase selective demodulation before detection. A DWDM optical label switching system, utilizing 40 Gbit/s payload data with low data rate labels placed on a 40 GHz sub-carrier and using TL transmitters is presented. Channel performance is monitored on a static channel as a second data channel is tuned into an adjacent channel on a 100 GHz spaced grid. Error free performance is demonstrated only for the channel payload – Time resolved BER results in agreement with the TL wavelength drift are measured and demonstrate a detrimental influence of the drift on the sub-carrier label performance

    Next Generation Reliable Transport Networks

    Get PDF

    Investigation of code reconfigurable fibre Bragg gratings for Optical Code Division Multiple Access (OCDMA) and Optical Packet Switching (OPS) Networks

    No full text
    This thesis documents my work in the telecommunication system laboratory at the Optoelectronics Research Centre, towards the implementation of code reconfigurable OCDMA and all-optical packet switching nodes based on fibre Bragg grating (FBG) technology. My research work involves characterizing the performance of various gratings, specifically high reflectivity, short chip duration, long code sequences, multiple phase level and tunable superstructured fiber Bragg gratings (SSFBGs), by using the recently proposed Frequency-Resolved Optical Gating technique based on Electro-Absorption Modulator (EAM-FROG). This technology can obtain the complex code profile along the grating, making it a powerful method to understand the thermally-induced code-reconfigurable grating. Efforts have been made to improve the grating design to achieve better system performance. Three different types of FBGs optical encoder/decoder, e.g. conventional discrete phaseshift SSFBGs, code-reconfigurable gratings, and novel continuous phase-shift SSFBGs, have been investigated comparatively, as well as their performance in various optical coding/decoding systems. This thesis also discusses the possibility of reducing multiple access interference (MAI) using a Two-Photon Absorption (TPA) process. The advanced grating devices enable the improvement of system performance. A dynamically reconfigurable optical packet processing system and a 16-channel reconfigurable OCDMA/DWDM system with 50GHz DWDM intervals has been demonstrated.These results highlight the feasibility of FBG-based optical coding/decoding techniques, with improved system flexibility and sustainability

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Resource allocation and performance analysis problems in optical networks

    Get PDF
    Optical networks pose a rich variety of new design and performance analysis problems. Typically, the static design problems belong to the field of combinatorial optimisation, whereas decision-making and performance analysis problems are best treated using appropriate stochastic models. This dissertation focuses on certain issues in resource allocation and performance evaluation of backbone wavelength-routed (WR) networks and metropolitan area optical burst switching (OBS) networks. The first two parts of the thesis consider heuristic algorithms for the static routing and wavelength assignment (RWA) and logical topology design (LTD) problems that arise in the context of WR networks. In a static RWA problem, one is asked to establish a given set of lightpaths (or light trees) in an optical WR network with given constraints, where the objective often is to minimise the number of wavelength channels required. In LTD problem, the number of wavelength channels is given and one is asked to decide on the set of lightpaths so that, for instance, the mean sojourn time of packets travelling at the logical layer is minimised. In the thesis, several heuristic algorithms for both the RWA and LTD problems are described and numerical results are presented. The third part of the thesis studies the dynamic control problem where connection requests, i.e. lightpath requests, arrive according to a certain traffic pattern and the task is to establish one lightpath at a time in the WR optical network so that the expected revenue is maximised or the expected cost is minimised. Typically, the goal of optimisation is to minimise some infinite time horizon cost function, such as the blocking probability. In this thesis, the dynamic RWA problem is studied in the framework of Markov decision processes (MDP). An algorithmic approach is proposed by which any given heuristic algorithm can be improved by applying the so-called first policy iteration (FPI) step of the MDP theory. Relative costs of states needed in FPI are estimated by on-the-fly simulations. The computational burden of the approach is alleviated by introducing the importance sampling (IS) technique with FPI, for which an adaptive algorithm is proposed for adjusting the optimal IS parameters at the same time as data are collected for the decision-making analysis. The last part of the thesis considers OBS networks, which represent an intermediate step towards full optical packet switching networks. In OBS networks, the data are transferred using optical bursts consisting of several IP packets going to the same destination. On the route of the burst, temporary reservations are made only for the time during which the burst is transmitted. This thesis focuses on fairness issues in OBS networks. It is demonstrated that fairness can be improved by using fibre delay lines together with Just-Enough-Time protocol (JET). Furthermore, by choosing the routes in an appropriate way one can also reach a satisfactory level of fairness and, at the same time, lower the overall blocking probability. Possible scheduling policies for metropolitan area OBS ring networks are also studied.reviewe
    corecore