1,096 research outputs found

    Determiner spreading as DP-predication

    Get PDF
    Determiner Spreading (DS) occurs in adjectivally modified nominal phrases comprising more than one definite article, a phenomenon that has received considerable attention and has been extensively described in Greek. This paper discusses the syntactic properties of DS in detail and argues that DS structures are both arguments and predication configurations involving two DPs. This account successfully captures the word-order facts and the distinctive interpretation of DS, while also laying the groundwork towards unifying it with other structures linking two DPs in a predicative relation

    On Existential MSO and its Relation to ETH

    Get PDF
    Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin\u27s celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic. Monadic NP, a well-studied class in the literature, is the restriction of the aforementioned logic fragment to existential monadic second order logic. The proposed class Linear Monadic NP is then the restriction of Monadic NP to problems whose expressions have linear measure in the complexity parameter. We show that Linear Monadic NP includes many natural complete problems such as the satisfiability of linear-size circuits, dominating set, independent dominating set, and perfect code. Therefore, for any of these problems, its subexponential-time solvability is equivalent to the failure of ETH. We prove, using logic games, that the aforementioned problems are inexpressible in the monadic fragment of SNP, and hence, are not captured by the framework of Impagliazzo et al. Finally, we show that Feedback Vertex Set is inexpressible in existential monadic second order logic, and hence is not in Linear Monadic NP, and investigate the existence of certain reductions between Feedback Vertex Set (and variants of it) and 3-CNF-Sat

    On the Relationship between Consistent Query Answering and Constraint Satisfaction Problems

    Get PDF
    Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and constraint satisfaction problems (CSP) [Fontaine, LICS 2013]. We investigate this connection more closely, identifying classes of CQA problems based on denial constraints and GAV constraints that correspond exactly to CSPs in the sense that a complexity classification of the CQA problems in each class is equivalent (up to FO-reductions) to classifying the complexity of all CSPs. We obtain these classes by admitting only monadic relations and only a single variable in denial constraints/GAVs and restricting queries to hypertree UCQs. We also observe that dropping the requirement of UCQs to be hypertrees corresponds to transitioning from CSP to its logical generalization MMSNP and identify a further relaxation that corresponds to transitioning from MMSNP to GMSNP (also know as MMSNP_2). Moreover, we use the CSP connection to carry over decidability of FO-rewritability and Datalog-rewritability to some of the identified classes of CQA problems

    Linear time computable problems and logical descriptions

    Get PDF

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    Randomisation and Derandomisation in Descriptive Complexity Theory

    Full text link
    We study probabilistic complexity classes and questions of derandomisation from a logical point of view. For each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as the complexity class BPP, bounded error probabilistic polynomial time, is defined from PTIME. Our main focus lies on questions of derandomisation, and we prove that there is a query which is definable in BPFO, the probabilistic version of first-order logic, but not in Cinf, finite variable infinitary logic with counting. This implies that many of the standard logics of finite model theory, like transitive closure logic and fixed-point logic, both with and without counting, cannot be derandomised. Similarly, we present a query on ordered structures which is definable in BPFO but not in monadic second-order logic, and a query on additive structures which is definable in BPFO but not in FO. The latter of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial sized circuits) cannot be derandomised. These results are in contrast to the general belief that most standard complexity classes can be derandomised. Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with counting, captures the complexity class BPP, even on unordered structures

    05301 Abstracts Collection -- Exact Algorithms and Fixed-Parameter Tractability

    Get PDF
    From 24.07.05 to 29.07.05, the Dagstuhl Seminar 05301 ``Exact Algorithms and Fixed-Parameter Tractability\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. This is a collection of abstracts of the presentations given during the seminar
    • …
    corecore