907 research outputs found

    No Simple Dual to the Causal Holographic Information?

    Full text link
    In AdS/CFT, the fine grained entropy of a boundary region is dual to the area of an extremal surface X in the bulk. It has been proposed that the area of a certain 'causal surface' C - i.e. the 'causal holographic information' (CHI) - corresponds to some coarse-grained entropy in the boundary theory. We construct two kinds of counterexamples that rule out various possible duals, using (1) vacuum rigidity and (2) thermal quenches. This includes the 'one-point entropy' proposed by Kelly and Wall, and a large class of related procedures. Also, any coarse-graining that fixes the geometry of the bulk 'causal wedge' bounded by C, fails to reproduce CHI. This is in sharp contrast to the holographic entanglement entropy, where the area of the extremal surface X measures the same information that is found in the 'entanglement wedge' bounded by X.Comment: 21 pages, 5 figure

    Postquantum Br\`{e}gman relative entropies and nonlinear resource theories

    Full text link
    We introduce the family of postquantum Br\`{e}gman relative entropies, based on nonlinear embeddings into reflexive Banach spaces (with examples given by reflexive noncommutative Orlicz spaces over semi-finite W*-algebras, nonassociative Lp_p spaces over semi-finite JBW-algebras, and noncommutative Lp_p spaces over arbitrary W*-algebras). This allows us to define a class of geometric categories for nonlinear postquantum inference theory (providing an extension of Chencov's approach to foundations of statistical inference), with constrained maximisations of Br\`{e}gman relative entropies as morphisms and nonlinear images of closed convex sets as objects. Further generalisation to a framework for nonlinear convex operational theories is developed using a larger class of morphisms, determined by Br\`{e}gman nonexpansive operations (which provide a well-behaved family of Mielnik's nonlinear transmitters). As an application, we derive a range of nonlinear postquantum resource theories determined in terms of this class of operations.Comment: v2: several corrections and improvements, including an extension to the postquantum (generally) and JBW-algebraic (specifically) cases, a section on nonlinear resource theories, and more informative paper's titl

    The Physical Basis of the Gibbs-von Neumann entropy

    Get PDF
    We develop the argument that the Gibbs-von Neumann entropy is the appropriate statistical mechanical generalisation of the thermodynamic entropy, for macroscopic and microscopic systems, whether in thermal equilibrium or not, as a consequence of Hamiltonian dynamics. The mathematical treatment utilises well known results [Gib02, Tol38, Weh78, Par89], but most importantly, incorporates a variety of arguments on the phenomenological properties of thermal states [Szi25, TQ63, HK65, GB91] and of statistical distributions[HG76, PW78, Len78]. This enables the identification of the canonical distribution as the unique representation of thermal states without approximation or presupposing the existence of an entropy function. The Gibbs-von Neumann entropy is then derived, from arguments based solely on the addition of probabilities to Hamiltonian dynamics.Comment: 42 pages, no figures (3rd version substantial revision and simplification of central argument incorporating adiabatic availability and passive distributions

    Low dimensional manifolds for exact representation of open quantum systems

    Full text link
    Weakly nonlinear degrees of freedom in dissipative quantum systems tend to localize near manifolds of quasi-classical states. We present a family of analytical and computational methods for deriving optimal unitary model transformations based on representations of finite dimensional Lie groups. The transformations are optimal in that they minimize the quantum relative entropy distance between a given state and the quasi-classical manifold. This naturally splits the description of quantum states into quasi-classical coordinates that specify the nearest quasi-classical state and a transformed quantum state that can be represented in fewer basis levels. We derive coupled equations of motion for the coordinates and the transformed state and demonstrate how this can be exploited for efficient numerical simulation. Our optimization objective naturally quantifies the non-classicality of states occurring in some given open system dynamics. This allows us to compare the intrinsic complexity of different open quantum systems.Comment: Added section on semi-classical SR-latch, added summary of method, revised structure of manuscrip
    • …
    corecore