15,693 research outputs found

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Counting Matchings with k Unmatched Vertices in Planar Graphs

    Get PDF
    We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [Kasteleyn 1961], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [Jerrum 1987]. To interpolate between matchings and perfect matchings, we study the parameterized problem of counting matchings with k unmatched vertices in a planar graph G, on input G and k. This setting has a natural interpretation in statistical physics, and it is a special case of counting perfect matchings in k-apex graphs (graphs that become planar after removing k vertices). Starting from a recent #W[1]-hardness proof for counting perfect matchings on k-apex graphs [Curtican and Xia 2015], we obtain: - Counting matchings with k unmatched vertices in planar graphs is #W[1]-hard. - In contrast, given a plane graph G with s distinguished faces, there is an O(2^s n^3) time algorithm for counting those matchings with k unmatched vertices such that all unmatched vertices lie on the distinguished faces. This implies an f(k,s)n^O(1) time algorithm for counting perfect matchings in k-apex graphs whose apex neighborhood is covered by s faces

    Monochromatic connected matchings in 2-edge-colored multipartite graphs

    Full text link
    A matching MM in a graph GG is connected if all the edges of MM are in the same component of GG. Following \L uczak,there have been many results using the existence of large connected matchings in cluster graphs with respect to regular partitions of large graphs to show the existence of long paths and other structures in these graphs. We prove exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 22-edge-colored multipartite graphs. In addition, we prove a stability theorem for such matchings.Comment: 29 pages, 2 figure
    corecore