12,341 research outputs found

    Living with Paradoxes

    Get PDF
    AbstractA good knowledge representation system has to find a balance between expressive power on the one hand and efficient reasoning on the other. Furthermore it is necessary to understand its limitations and problems. A logic which contains strings is very expressive and allows for very natural representations, which in turn allow for appropriate reasoning patterns. However, such a system has the feature that it is possible to formulate self-referential paradoxes in it. This can be considered as a strength and as a weakness at the same time. On the one hand it is a positive aspect that it is possible to represent paradoxes, which can be formulated in natural language. On the other hand it is necessary to be careful and not to trivialise the logical system. In the paper different aspects of knowledge representation which allows self-referentiality will be discussed. A system will be presented which is a pragmatic compromise between expressive power on the one hand and simplicity and efficiency of the reasoning process on the other hand. It is built on a three-valued system that makes it possible to use reasoning techniques from classical first-order logic

    D-brane Approach to Black Hole Quantum Mechanics

    Get PDF
    Strominger and Vafa have used D-brane technology to identify and precisely count the degenerate quantum states responsible for the entropy of certain extremal, BPS-saturated black holes. Here we give a Type-II D-brane description of a class of extremal {\it and} non-extremal five-dimensional Reissner-Nordstr\"om solutions and identify a corresponding set of degenerate D-brane configurations. We use this information to do a string theory calculation of the entropy, radiation rate and ``Hawking'' temperature. The results agree perfectly with standard Hawking results for the corresponding nearly extremal Reissner-Nordstr\"om black holes. Although these calculations suffer from open-string strong coupling problems, we give some reasons to believe that they are nonetheless qualitatively reliable. In this optimistic scenario there would be no ``information loss'' in black hole quantum evolution.Comment: 18 pages, uses harvmac and psfig. The new version of the paper corrects various errors, omissions and obscurities of the original submission. The major error was an underestimate of the severity of the strong coupling problem in the D-brane description of black holes with a macroscopic event horizon. The new version has a more sober, but still optimistic assessment of what aspects of black hole quantum mechanics are be brought under control by D-branes. We thank several correspondents for helpful criticism and advic

    Is Classical Mathematics Appropriate for Theory of Computation?

    Get PDF
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it is demonstrated that any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction. We conclude that our mathematical frame work is inappropriate for Theory of Computation. Furthermore, the result provides us a reason that many problems in Complexity Theory resist to be solved.(This work is completed in 2017 -5- 2, it is in vixra in 2017-5-14, presented in Unilog 2018, Vichy
    • …
    corecore