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Is Classical Mathematics Appropriate for Theory of Computation?
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Amir Kabir University (Tehran Polytechnic), Department of Mathematics &
Computer Science Tehran 1591634311, Iran

Abstract. Throughout this paper, we are trying to show how and why our Mathematical frame-work
seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of
turning backin time in paradoxes causes inconsistency in modeling of the concept of Time in some
semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging
Paradox”, first we attempt to open a new explanation for some paradoxes.

In the second step, by applying this paradox, it is demonstrated that any formalized system for the

Theory of Computation based on Classical Logic and Turing Model of Computation leadsusto a
contradiction. We conclude that our mathematical frame work is inappropriate for Theory of
Computation.

Furthermore, the result provides us areason that many problems in Complexity Theory resist to be

solved.
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1 Introduction

The surprise exam paradox (Unexpected Hanging Paradox) isa well-known paradox thathasa sufficiently
large literature in Philosophy and Mathematics. Nowadays, thisparadox isknown as “Surprise test paradox”,
aswell.

A simple formulation of this paradox can be observed in some of the references that we have introduced,
namely references[14],[19].

Historically, this paradox wasexposed in academiccircles by O’Conner'sarticle [14] for the first time;
however, itseems to have been mentioned before 1940 anonymously.

Some people thinkthatbasically, itis not a paradox. Quine 'sworkwasin thisline [15]. Othersbelieve that
the paradox hasbeen resolved by Quine and only some of its aspects remain to be discussed [17].

In fact, there is no consensus on thisissue, so we have no final resolution yet.

Historically, there are differentapproachesto solve this problem:

1 Logicalapproach
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Some researchers put more stress on its logical aspects and try to tackle this problem with a logical approach
[4],[16],[10]. Forinstance, they assume that this problem is self-contradictory and self-referencing and try
to apply thisassumption in order to solve it.

Parallel to thisapproach, this paradox isappliedto give a solution to the First and also the Second Goédel
Theorem.In [12], inspired by surprise examination argumentand by the application of some other Theorems,
the authors give anew proof for the second completeness theorem. Before this work, Chaitin hasdone a
similar work by applyingthe Berry paradox [2].Itis considered as an attempt to show the self-referential
features of this paradox. There are similarearlierarticles [5].

The explanationsof [7],[11] are in thisline.
2 Epistemic approach

Some researchers thinkaboutthis paradox asa paradox ofknowledge (EpistemicParadox).Some approaches
try to know the ability or inability of some statements [3].In recentyears, we have had some attemptsto solve
this problem in dynamic epistemiclogic: [6], [19].

There are attempts to solve this problem once and for ever. While numeroussolutions have been proposed
for this paradox during the lastsix decades, it continuously surprises us. A number of articles have made
endeavorsto putan end to itonce and forever[13].

In [8],[18], we have found the relationshipamong thisparadox and the othertypesof paradoxes.In [9] a
game theory approach is presented to solve the paradox.

Solving thisparadox isnot the main aim of this article. First, in section 1, we introduce and apply a new
version of this paradox to show that there is a semanticsituation which no formal consistent system in the
classical sense supports, and thisis one of our major claims. Therefore, we know thatthis version of paradox
isalogical paradox and, consequently,the firstapproach is appropriate for it. Then, a definite solution for
thatis given, which isalso a possible solution for the “Unexpected HangingParadox”. Nevertheless, the article
is silentabout a definite solution to the original form of paradox. In section 1, by applyinga version of this
paradox, we try to modify and formalize thisproblem and show the above claim.

In section 2, applying the aforementioned assertions shows us a general claim abouta contradiction in the
“Theory of Computation” or the deficiency of this theory in modeling some situations. It demonstrates the
reason that some problems remain un-answered in the Theory of Computation.

2 A Modified Version of Unexpected Hanging Paradox and the Logical
Consequence of It

In this section, first a modified version of the paradox is presented; then we conclude that there is a
proof and a semantic situation associated with this proof, but the proof doesn’t show the truth.
Later, we make the proof more precise in a formal form.

We express this restated “Unexpected Hanging Paradox” asfollows:

“ A ComputerScientist inventsa Computerwhich argueslogically; in addition, all the information and
conclusions on this Computerare announced to the publicopenly. From now on, in order to avoid ambiguity
we call this computer, Computerl.

The inhabitantsofthe city do notlike this computer, and they appointajury which decidesaboutthe
destiny of Computerl.

Thejury'sdecision is declared to the ComputerScientist and the computer as follows:



The Computerwill be destroyed in the nextweekon a day that wasn’tconcluded by the computer itself
before that day. Nodoubt, we know everything thatthe computer knows or everythingitwill conclude. (The
computeris invented in a way thatitdeclares everything itconcludesand every new piece of information; we
can imagine thatitrevealsall its conclusions in a printing form).

After announcingit, the computer starts to argue and itfindsthe following arguments (the argument of
‘Hanging Paradox’). Itshould be noted that because of the computer's intelligence, everyone knowsthat
destroying the computer is equal to “executing the computer”.

Demonstration of the computer:

[will notbe executed on Saturday, since if] were executed on Saturday, [would be alive till Friday, and on
Friday I conclude that I will be executed on Saturday (since based on whatthe jury said, I will be executed in
the nextweek). Thus, if | remain alive until Friday, Iwill conclude on thatday thatl will notbe executed on
Saturday (in view ofthe proposed claim of the jury).Thisargumentexists in my database at the moment (by
my forthcoming conclusion, right now). In a more exact form, the computer arguesas follows:  have a timer;
by using my storage and database [ conclude thatl will conclude on Friday “I will be executed on the nextday,
so based on the claims of jury, I will notbe executed on Saturday”.

2.1willnotbe executed on Friday, since if | were executed on Friday, I would remain alive till Thursday,
and on Thursday and ourclaimin point1 and based on whatthe jury said (“The computer will be executed in
the nextweek”), I conclude thatI will be executed on Friday. Therefore, by the proposed claim of the jury, |
will notbe executed on Friday (this argumentexists in my database rightnow by my forthcoming conclusion.
Soin case | remain alive until Thursday, Iwill conclude on thatday thatl will notbe executed on Friday).In a
more exact form, the computer arguesas follows: I have a timer; by using my storage and database Iconclude
that I will conclude on Thursday that“I will be executed on the nextday, so by the proposed claim of the jury,
[ will notbe executed on Friday”.

6. Iwillnotbe executed on Monday, since if] am executed on Monday, [will be alive till Sunday, and on
Sunday based on the claims made in sections 1&2&...&5, I conclude thatl will be executed on Monday, since
by whatthe jury has said, | will be executed in the nextweek. So, in case [ remain alive until Sunday, [ will
conclude on thatday thatI will notbe executed on Monday (based on the proposed claims of jury). This
argumentexists in my database rightnow by my forthcoming conclusion. In a more exact form, the computer
arguesas follows: I have a timer; based on my storage and database, I conclude that will conclude on Sunday
that “I will be executed on the nextday, so by the claim of jury, I will notbe executed on Monday”.

7.1will notbe executed on Sunday,since based on points 1-6, 1 will not be executed on Saturday, Friday
...Monday.

Sol should be executed on Sunday. However, my conclusion (to be executed on Sunday) concludesthatl
will notbe executed on Sunday.

So,I will not be destroyed in the nextweek.

The computer didn’tconclude more than its everyday conclusions; it concluded that it will notbe executed on
the nextday based on argumentssimilar to the onesmentioned above.

The computer was crashed on Tuesday and the Computer Scientistcomplained aboutthis injustice,and he
reported the argument of the computer to journalsand the court. In this message the computer scientist
mentionsthat the computer presented alogical argument, proving thathe will notbe destroyed in the next
week. Nevertheless, he wascrashed.

The court said:



The computer proved thatit will notbe destroyed. Thisis a true proof. We crashed him on Tuesday, and ashe
claimed he didn’tconclude thathe will be destroyed on Tuesday. On the contrary, he announced that“he will
not be executed (destroyed) on thatday”. In other words, he proved in hismessage that by accepting what
thejudge said asa true claim, he would notbe executed in thatweek. More formally, it may be stated as
follows:

P: Thejudge'ssentenceis considered a true claim
Q: He would notbe destroyed in this week
“His proof (ptq) is atrue proof, butit doesn’t show the Truth”. (*¥)

In this paper,we defend the above claim of the jury (¥) and we try to show how we could develop thisidea.

It isnoteworthy to mention that we don’tclaim the above result proposes a solution to “Unexpected
Hanging Paradox” in any ofits versions. It is simply considered as the only way to explain thisversion of
“Unexpected hanging paradox”.Lateron, we will know the above resultas a possible explanation forthe
other versions of this paradox and also some other paradoxeslike the liarparadox.In [1] we can find a more
conclusive explanation of the liar paradox.

To formalize the above proof, we call our computer “A” and wheneverwe say "A concludes”,in our
paradox, we replace itby A:[¢]. Also, A:;[¢] stands for “A concludes or utters ¢ in the ith day”.

In the following formalism, ¢ (i) stands for "A will be executed in the ith day". We slightly change the
scenario. We suppose the ceremony of smashing the computer take places from 11/00-12/00; this givesusa
better understandingforthe second principle. By (p(i) , we mean the computeris being smashed in the ith
day.
A: [¢Y] meansthere exists 1<i<7 in which A;; [¢].

Now in any formalization of the problem and proof, we will have the followingassertions:
LV o)
2. ~p(n) - [A: [~@(®)]] (In the evening ofeach day, Aunderstandshe isnot destroyed and he declaresit).
3. (k) - Ai=1,i¢k ~@ (i) (If he is destroyed in a day, we conclude thatin the other dayshe wasn’t
destroyed).
4 NS A [~e(DD AL 4 [~ (DD - Aver [o(0)]
5.4z, [(p(k + 1)] - ~<p(k + 1) (If A utters in the ith day thathe will be executed in the i+1th day, he will not
be executed ini+1th day,i=0,1,...,6,7).

~p(7)=T
Suppose@ (7)=T

NS, ~p(i) (Principle 3)
AN, A: [~p(i)] (Principle?2)
Az [(p(7)] (Principle 4)
~@(7) =T (Principle5)

~p(6)=T
Suppose p(6) =T
A, ~p(@) A ¢(6) A ~(7) (Principal 3)



AL, a: [~o()] A [o(@] a4 [~p(7)] (Prindpai2)
Ag [(p(6)] (Principle 4)

~@(6) =T (Principle5)

3.~(p(5) = T.Similarto the above proof.

7. ~(p(1). In a similar way.

So we have a contradiction here, since ¢ (3). m

So,we have amodel whose associated formal system is contradictory. It is notable thatany syntactical
system that we attribute to the above paradox containsthe above statements, whetherdirectly or asa
conclusion. In other words, the proof shows that this formalism and any other formalism are essentially
contradictory, but we have a semanticsituation for this contradictory formalism.

As we see, considering turning back in time which appliesin the paradox,causesinconsistency in modeling
of the concept of Time in some semantic situations.

2.1 An Explanation

In the above system, there is a contradiction. In brief, the judgesclaim that the computer will be destroyed
the nextweek, butthe computer proves that he will notbe destroyed. Thus, this system is an inconsistent
system, but at the same time we have a semantic situation for this system. In otherwords, we have a
semantic situation which no consistent syntactical system supports. As aresult, the above proof does not
show any truth, so there are some incorrigible flaws in the modeling and “formalizingthe proof”. In other
words, formal systems are not able to support such semanticsituations. Clearly, thisopensanew way to
explain some paradoxessimilarto the liarparadox orthe “Unexpected HangingParadox” in itsusual form, as
stated below:

In such paradoxesthe proofs don’tshow the truth, since there is no consistent syntactical system to
support the related semantic situation. Although this explanation seemsodd and notessential for many
paradoxes, aswe explained for our version of the “Unexpected HangingParadox”, thisis the unique and
essential way to explain the contradiction when we consider classical logic as back ground. Therefore, we
may conclude that this explanation isa plausible and possible way in the othercases, as well.

Thisis the first central result and thesis of this paper.
3 The Conclusions in the Theory of Computation

In this chapter, by employing the results in the previouschapters we present some conclusions about the
consistency of the “Theory of Computation”. Firstly, we should define a special type of Turing machine. This
Turing machine isable to smash itself (from now on instead of “executing” and “destroying”, we use
"cracking”).

To dothis, we add letters of the alphabet“s” and “*” to )’ to have )},. The machine isfed by alisting of ace

set A. When itreaches the symbol “s”, first it emits “*” as the final output, then ithaltsand neverworks (itis
cracked).



Definition 1. LetM be a Turing Machine and AS Zl*isa c.e set. Suppose that L, a list of A. (M,L,), is a

“_n»

machine that is fed by strings in L, by the same order in L, and when it reaches the symbol “s”, first it emits a
symbol “*, then it halts and does not work anymore.

Theorem 1. Forany Turing machine, M, and c.e. set AS 21*/ there isset BC ), " such that (ML) is
equivalent to (M,Lg).

Proof (of Theorem) We consider the following cases:
1.The strings of A contain no “s”. Since itis easy to see thatthe range and domain ofthismachineisc.e, itis
sufficient to consider B=Aand L, = Lg.
2.At leastone of the strings in A contains “s”, so the range and domain of the machine would be finite. Itis
sufficient to consider B as that finite subset of A which is the domain of (M,L,) and the listing which is derived
from thelistingof L,.m

Thus, thisnew machine hasno powermore than the Turing machine, and itdoesn’tviolate Church Thesis.
Now we design a (M,L,) machine to demonstrate the situation in the paradox.

Here, our possible inputis:
(0,0,0,0,0,0,0) representsnoday in the week on which the computer would be cracked.
(1) representsit will be cracked on Sunday,

(0,1) represents it will be cracked on Monday, (0,0,1) representsitwill be cracked on Tuesday, (0,0,0,1)
represents it will be cracked on Wednesday,

(0,0,0,0,0,0,1) representsit will be cracked on Saturday.
We have two differenttypesof states:
1.First Type:

Qg,--Q¢,QF are usual states (no emission). They representdaysof the week and Q isthe final state. We
call the other states “emission states”.

2 Second Type
2.1 Q. When 1 enters this state asinput, itemits “s” (the state of cracking).
2.2

<

represents the computer in the paradox. Itemits 0 when 1 enters as input. Itemits “*” when “s” enters as
input.
2.3




represents the jury in ourscenario. Itis able to emit 1. (Here, it emits 1 when C (computer) emits 0 and the
associated Q; emits 1 (1 <i<6),aswe see in Figl).

1 / 1
/

/

Fig 1

Adopting the scenario of paradox, we have a proofthatthe computer in the paradox (Computer 1) will notbe
cracked and thisproofis in its storage.

The second Computer (Fig 1) accepts the possible daysof execution. We call it Computer2. C represents
Computerl introduced in the paradox. When 1 enters C and ], C emits 0, (it represents "it knowsthat it will

notbe cracked"). ] emits 1to Q. and itemits “s” to C, so it cracks C. (Since Computerl doesnot know thatit
will be cracked. More exactly, the computer claims it will not be cracked and ] emits 1, so the machine would
be cracked, repeating the argumentofthe paradox).In the final step, C emits * to go to the final state.

[t is easy to see that this machine is a (M, L,) machine type fora finite set A, and hence it is
equivalent to a Turing machine by Theorem1.

Therefore, any inputfromthe above set of inputis acceptable eitherasthe day of cracking (executing day)
or the day thatthe computerisnot cracked. Thisclaim adaptsto the jury's claim in the restated paradox.
But by demonstration and proof of computer 1, simply (0,0,0,0,0,0,0) isconsidered asacceptable input.

So 7=1, consequently Vn 2"=1.
By this contradiction, we have two immediate results:
1.The Theory of Computation isself —contradictory
2.P=PSPACE =NP
The second claim seems interesting and exciting, butitis based on a contradiction in the system.

We should mention thathere the proof presented in “Unexpected HangingParad ox” and depicted by
Computer2 contradicts the result of the computation.



Remark So,wehave acontradiction in the “Theory of computation” when we apply the Turing modelasour
model of computation in order to model this situation. Here it providesus a reason why so many problems
in Complexity Theoryis notsolved, such as P=NP and P=PSPACE.

4 Conclusion

Most of the proofs and demonstrations in the Theory of Computation (especially in Complexity Theory)
employ three elements: first, a situation similar to the above (for instance, discrete objects like graphsand
moving from one node to the other and passing edges,...) in which the problem ispresented, a model of
computation (like Turing machines) asthe second element, and Mathematical proofsand reasoning asthe
third.

In thisregard, there is no specificissue or exception in ourexample in the previoussection. Moreover, this
should be considered a simple example, since neitherinfinite Mathematical objectsnor large numbers are
involved in thisproblem.

In otherword, the situation here isa common situation in proofs and demonstrationsin Theory of
Computation and simple in philosophical sense. [tseems worryingly ad hocto consider this example asan
exception.

In any case, we face a contradiction in the Computational Modelingofthissituation. Itis notable that the
bases of our argumentsare Classical Logic and the Turing Model of Computation.

In brief, by applying thisparadox,itis demonstrated that any formalized system for the Theory of
Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction. As a result,
itillustrates the reason many problems in the Theory of Computation resist to be solved.

Ultimately, we face the proposed question again:|s classical Mathematics appropriate as a framework for Theory

of Computation?
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